INTERACTION BETWEEN ROOT-KNOT NEMATODE AND WILT FUNGI ON TOMATO

By

IBRAHIM YOSIF MAHMOUD TAHER

B.Sc. Agric. (Plant Protection), Ain Shams University, 2011

A thesis submitted in partial fulfillment

Of

The requirements of the degree of

in
Agricultural Sciences
(Agricultural Zoology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

INTERACTION BETWEEN ROOT-KNOT NEMATODE AND WILT FUNGI ON TOMATO

BY

IBRAHIM YOSIF MAHMOUD TAHER

B.Sc. Agric. (Plant Protection), Ain Shams University, 2011

The thesis for the M. Sc. Degree has been approved by:
Dr. Abdelminam Yasin Ali Elgendy Prof. Emeritus of Zoology and Plant Nematode, Faculty of Agricultural Cairo University
Dr. Kadry Weshahy Mahmoud Prof. Emeritus of Plant Protection, Faculty of Agriculture, Ain Shams University
Dr. Entsar Helmy Taha Associate Prof. of Nematology, Faculty of Agriculture, Ain Shams University.
Dr. Abdalla Shehata Mohamed Kassab Prof. Emeritus of Nematology, Faculty of Agriculture, Ain Shams University
Date of Examination: / / 2017

INTERACTION BETWEEN ROOT-KNOT NEMATODE AND WILT FUNGI ON TOMATO

BY

IBRAHIM YOSIF MAHMOUD TAHER

B.Sc. Agric. (Plant Protection), Ain Shams University, 2011

Under the supervision of:

Dr. Abdalla Shehata Mohamed Kassab

Prof. Emeritus Nematology of Agricultural Zoology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Ahmed Eid Abdel-Megeed Mahgoob

Associate Prof. of Agricultural Zoology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University.

Dr. Entsar Helmy Taha

Associate Prof. of Agricultural Zoology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Ibrahim Yosif Mahmoud. Interaction between Root-Knot Nematode and Wilt Fungi on Tomato. Unpublished M.Sc. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2017.

Experiments of this study aimed to find out tomato cultivars that possess adequate resistance or tolerance to Meloidogyne incognita (Mi) nematode and / or Fusarium oxysporum f. sp. lycopersici (Fol) wiltfungus infections. Screening test of five tomato cultivars against target pathogens indicated that, Hyb.ypeel 303 and H 9035 cultivars are resistant plants while, ALISSA F1 cultivar is tolerant plant but, Jakal and Malika cultivars are susceptible plants. Accordingly, susceptible cultivars were valueless and excluded from advanced study. To estimate plant response against nematode and wilt fungus infections, the increasing inoculum levels of each pathogen indicated that, Hyb.ypeel 303 cultivar possessed complete resistance while H 9035 cultivar has partial resistance. On the other hand, ALISSA F1 cultivar was found to be tolerated. To monitor the interaction between both pathogens, an experiment was designed by applying increasing inoculum levels of one pathogen and a fixed inoculum level of the other. The results revealed that, H 9035 cultivar exhibited increasing wilt severity with increasing Mi inoculum levels but the rate of Mi reproduction did not affected. As with ALISSA F1 cultivar, data indicated that, severe wilt symptoms were induced by increasing inoculum levels of Mi. Conversely, decreasing nematode population was resulted from increasing inoculum levels of Fol. As regard to Hyb.ypeel 303 cultivar, the results showed that, neither Mi nor Fol could infect the roots initially. To demonstrate the role of one pathogen in modifying the host cultivar to the other pathogen, an experiment was achieved by predisposing the host cultivar to one pathogen while the other was delayed. The result indicated that, Mi could stimulate wilt severity in both H 9035 and ALISSA F1 cultivars. On the other hand, Fol could aggravated Mi population in H 9035 cultivar and inhibited Mi population in ALISSA F1 cultivar. As regard to Hyb.ypeel 303 cultivar, sequence of the two pathogens indicated wholly resistance to both target pathogens. Split-root experiment was carried out to detect the possible role of translocatable substances by involved pathogens. The result revealed that, early nematized half root of H 9035 and ALISSA F1 cultivars could induce severe wilt symptoms on wholl plant. On the other hand, fungal diseased half root could not aggravate Mi reproductivety. As with Hyb.ypeel 303 cultivar, the results showed no infections by both pathogens occurred in both halve roots. Furtherly, infected and disinfected roots to Mi and Fol in split root experiment were tested phenolically. The results indicated that, in all dual treatments, increased phenols were propotional to low counts of Mi nematodes and increased Fol wilt severity. Finally, these collective data confirmed that, physiological changes induced by Mi nematode could offer tomato cultivars to be more susceptible to fungal pathogen in tomato H 9035 and ALISSA F1 cultivars.

Key words: Interaction, *Meloidogyne incognita*, Root-Knot nematode, *Fusarium oxysporum* f. sp. *lycopersici*, Wilt fungi and tomato.

ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation to **Dr. Abdalla Shehata Kassab**, Professor Emeritus of Nematology, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his direct supervision, Keen assistance in writing and finalizing data, invaluable efforts in reviewing the manuscript and sincere help during the course of this work.

Sincere appreciation is jointed to **Dr. Ahmed E. Mahgoob**, Associate Professor of Agric. Zoology, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his supervision, encouragement, guidance during the experimental work and in preparation and finalizing data of the manuscript.

Heartily credit is extended to **Dr. Entsar H. Taha** Associate Professor of Agric. Zoology, Plant Protection Department, Faculty of Agriculture, Ain Shams University for her supervision, sincere support and in preparation and finalizing data of the manuscript.

Deepest gratitude is also extended to **Dr. Mohamed Y. Banora**, Lecture of Plant Pathology, Plant Pathology Department, Faculty of Agriculture, Ain Shams University for his supervision, interest and assistance in work and for his valuable help.

Sincere acknowledgement is directed to **Dr. Mohamed Sh. Mostafa**, Associate Professor Emeritus of Agric. Zoology, Plant Protection Department, Faculty of Agriculture, Ain Shams University, for his guidance in the preparation of this thesis.

The author is also indebted to all staff-members of the Plant Protection Department, Faculty of Agriculture, Ain Shams University for their encouragement and collaboration during this study.

CONTENTS

No.		Page
	LIST OF TABLES	VI
	LIST OF ABBREVIATIONS	X
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	2
1	Tomato plants in occurrence of Fusarium-wilt and	
	Meloidogyne spp. Nematode	2
2	Root-knot nematodes	2
2.1	Host rang and geographic distribution	2
2.2	Symptoms of root knot nematode	4
2.2.1	Above ground symptoms	4
2.2.2	Below ground symptoms	4
2.3	Conditions for disease development	5
2.4	The infection process	5
3	Fusarium wilt fungus	6
4	Interaction between Root-knot nematode and	
	Fusarium wilt on tomato plants	8
5	Split root technique	22
III	MATERIALS AND METHODS	25
1	THE USABLE MATERIALS	
1.1	Root-Knot nematode	25
1.1.1	Source and identification of <i>M. incognita</i>	25
1.1.2	Mass culture of <i>M. incognita</i>	25
1.1.3	Preparation of <i>M. incognita</i> inoculum	25
1.2	Fusarium wilt fungus	26
1.2.1	Identification of Fusarium wilt	26
1.2.2	Preparation of fungal inoculum	26
1.2.3	Disease assessment.	26
1-3	The Source of Tomato seeds	26
2	THE PRACTICAL EXPERIMENTS	27
2.1	General procedures	27

2.2	Screening test of some tomato cultivars against Mi or
	Fol infectivity
2.3	Sensitivity test of tomato cultivars (Hyb.ypeel 303, H
	9035 and ALISSA F1) against Mi or Fol infections
2.3.1	Effect of increasing inoculum levels of Mi on tested
	three tomato cultivars
2.3.2	Effect of increasing inoculum levels of Fol on different
	tomato cultivars
2.4	Effect of concomitant infections with Mi and Fol on
	the three tested tomato cultivars
2.5	Effect of increasing inoculum levels of Mi and
	constant inoculum level of Fol on tested three tomato
	cultivars
2.6	Effect of increasing inoculum levels of Fol and
	constant inoculum level of Mi on tested three tomato
	cultivars
2.7	Reciprocal effect of Mi and Fol in relation of time of
	infection on the tested three tomato cultivars
2.8	Effect of Mi and Fol infecting half roots of tested three
	tomato cultivars on nematode reproduction and
	fusarial incidence
2.9	Estimation of total-phenols in infected and disinfected
	half roots by Mi and Fol.
3	Statistical analysis
IV	RESULTS
1	Screening test of some tomato cultivars against Mi and
	Fol infectivity
2	Sensitivity test of tomato cultivars against Mi or Fol
	infections
3	Exploring possible interaction between Mi and Fol in
	tomato cultivars

4	The possible role of population density of tested	
	pathogens in initiating a positive interaction between	
	Mi and Fol	42
5	The possible role of time addition of tested pathogens	
	in initiating a positive interaction	49
6	The possible role of physiological changes induced by	
	pathogens in initiating a positive interaction	53
7	The possible role of phenolic on contact of both Mi	
	and Fol infections and plant response	57
V	DISCUSSION	60
VI	SUMMARY	69
VII	REFERENCES	73

LIST OF TABLES

No.		Page
1	Effect of infection by <i>Meloidogyne incognita</i> (Mi) or <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) on nematode multiplication, host infestation and host	
	characters on five cultivars of tomato	33
2	Effect of increasing inoculum levels of <i>Fusarium</i> oxysporum f. sp. lycopersici (Fol) on host infestation	
	and host characters in tomato cv. ALISSA F1	35
3	Effect of increasing inoculum levels of <i>Melidogyne</i> incognita (Mi) on host infestation, root population of nematodes and host characters in tomato cv. ALISSA	
	F1	36
4	Effect of increasing inoculum levels of <i>Melidogyne</i> incognita (Mi) on host infestation, root population of	
	nematodes and host characters in tomato cv. H 9035	37
5	Effect of increasing inoculum level of <i>Fusarium</i> oxysporum f. sp. lycopersici (Fol) on host infestation	
	and host characters in tomato cv. H 9035	38
6	Effect of increasing inoculum levels of <i>Melidogyne incognita</i> (Mi) on host infestation, root population of nematodes and host characters in tomato cv. Hyb.ypeel	
	303	39
7	Effect of increasing inoculum level of <i>Fusarium</i> oxysporum f. sp. lycopersici (Fol) on host infestation	
	and host characters in tomato cv. Hvb vneel 303	40

8	Effect of concomitant inocula of <i>Meloidogyne</i> incognita (Mi) and <i>Fusarium oxysporum</i> f. sp. lycopersici (Fol) on host infestation, host characters and multiplication of nematode in three tomato cultivars.	41
9	Effect of fixed inoculum of <i>Meloidogyne incognita</i> (Mi) and increasing inoculum levels of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fol) on host infestation, host characters and multiplication of nematode in tomato cv. ALISSA F1	43
10	Effect of fixed inoculum of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fo) and increasing inoculum levels of <i>Meloidogyne incognita</i> (Mi) on host infestation, host characters and multiplication of nematode in tomato cv. ALISSA F1	44
11	Effect of fixed inoculum of <i>Meloidogyne incognita</i> (Mi) and increasing inoculum levels of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fol) on host infestation, host characters and multiplication of nematode in tomato cv. H 9035.	45
12	Effect of fixed inoculum of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fol) and increasing inoculum levels of <i>Meloidogyne incognita</i> (Mi) on host infestation, host characters and multiplication of nematode in tomato cv. H 9035	46
	Н 9035	46

13	Effect of fixed inoculum of <i>Meloidogyne incognita</i> (Mi) and increasing inoculum levels of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fol) on host infestation, host characters and multiplication of nematode in tomato cv. Hyb.ypeel 303	47
14	Effect of fixed inoculum of <i>Fusarium oxysporum</i> f. sp. <i>lycopersici</i> (Fol) and increasing inoculum levels of <i>Meloidogyne incognita</i> (Mi) on host characters and multiplication of nematode in tomato cv. Hyb.ypeel 303	48
15	The reciprocal effect of <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) and <i>Meloidogyne incognita</i> (Mi) in relation to time of infection on host infestation and multiplication of nematode in tomato cv. H 9035	50
16	The reciprocal effect of <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) and <i>Meloidogyne incognita</i> (Mi) in relation to time of infection on host infestation and multiplication of nematode in tomato cv. ALISSA F1	51
17	The reciprocal effect of <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) and <i>Meloidogyne incognita</i> (Mi) in relation to time of infection on host infestation and multiplication of nematode in tomato cv. Hyb.ypeel 303	52
18	the Reciprocal effect of <i>Meloidogyne incognita</i> (Mi) or <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) infecting half-roots of tomato cv. H 9035 on host infestation and root population of nematodes	54
19	Reciprocal effect of <i>Meloidogyne incognita</i> (Mi) or <i>Fusarium oxysporum</i> f. sp. <i>lycoperseci</i> (Fol) infecting half-roots of tomato cv. ALISSA F1 on host infestation and root population of nematodes	55

20	Reciprocal effect of Meloidogyne incognita (Mi) or	
	Fusarium oxysporum f. sp. lycoperseci (Fol) infecting	
	half-roots of tomato cv. Hyb.ypeel 303 on host	
	infestation and root population of nematodes	56
21	Phenolic contents per half root of Hyb.ypeel 303, H 9035 and ALISSA F1 cultivars in contact of <i>Meloidogyne incognita</i> (Mi) or <i>Fusarium oxysporum</i> f.	
	sp. lycoperseci (Fol)	58

VIII

LIST OF ABBREVIATIONS

Av. Wt. : Average of weight

Fol : Fusarium oxysporum f. sp. lycopersici

g : gram

IPM : Integrated Pest Management

J₂ : Second juvenile stage

mg : ml gram

Mi : Meloidogne incognita

No. : Number

PDA : Potato Dextrose Agar

RKN : Root-Knot Nematode

Rr : Rate of nematode reproduction

Rws : Rate of wilt severity

SAS : Statistical Analysis System

Sec : Second

INTRODUCTION

In fact, plant parasitic nematode and soil borne pathogens such as *Fusarium* wilt devour considerable amount of many agricultural crops. Thus, the development of an effective and successful control management will undoubtedly protect a wide range of vital food crops against disease complex threat.

Chemical control by nematicides and fungicides are still a costeffective for reducing the population of one of the pathogens. Empirically, the control of the target pathogen beyond the second year was useless with the same chemical treatment.

Cultural control, i.e. crop rotation was practiced by the farmers till now to reduce simultaneously both pathogens to population levels below economically threshold extent. However, the saprophytic ability of *Fusarium* wilt fungi and the wide host range characteristic of nematodes minimize this control measure.

Management of multi-pathogen adversities by cultivating resistant plants has an advantage over other measures. It relieves farmers from costly chemical protection and for higher yield and acceptable agronomical extra efforts.

The present work was, therefore, proposed to detect the resistant or tolerant tomato cultivars to Mi nematode and / or *Fusarium*-wilt disease. Also, to realize the role of Mi nematode in modifying the host plant to facilitate the establishment of *Fusarium* fungi leading to complex disease. Finally, to select potential resistant or tolerant tomato cultivars to avoid nematode and fungal crop loss in fields and to disinfect tomato seedling in nurseries.