BOND STRENGTH OF ENDOREZ ROOT CANAL FILLING TO DENTIN AFTER DIFFERENT IRRIGATION PROTOCOLS

Thesis

Submitted to Endodontic department
Faculty of dentistry, Ain Shams University
In partial fulfillment of the requirements of
master degree in Endodontics

BY

Ramy Mohamad Ashraf

(B.D.S)

Faculty of Dentistry 6th October University (2004)

Supervised by

Dr. Ahmed Abdel Rahman Hashem

Associate Professor of Endodontics, Faculty of Dentistry, Ain Shams University

Dr. Abeer A Alhakeim Elgendy

Lecturer of Endodontics
Faculty of Dentistry, Ain Shams University

ACKNOWLEDGMENT

- I would like to express my deep gratitude and appreciation to **Dr. Ahmed Abdel Rahman Hashem**, Associate professor of Endodontics, Ain Shams University, for his kind guidance, unlimited support and help throughout my academic and clinical work.
- I would like to thank **Dr. Abeer Elgendy**, Lecturer of Endodontics Ain Shams University, for her excellent advice and invaluable support during this study.
- I would like to thank **Dr. Hossam Tawfik**, Chairman of Endodontic department, Ain Shams University, and all members of endodontic department, faculty of dentistry, Ain Shams University, for their help and cooperation.

قياس قوة الرابطة بين مادة الإندوريز لحشو الجذور وعاج الأسنان بعد إستخدام محاليل مختلفة لغسيل قنوات الجذور

رسالة

لكلية طب الأسنان جامعة عين شمس للحصول على درجة الكلية طب الأسنان جامعة عين شمس للحصول على درجة

مقدمة من الطبيب
رامى محمد أشرف
بكالوريوس طب وجراحة الفم والأسنان
جامعة ٦ أكتوبر

تحت إشراف

د/أحمد عبد الرحمن هاشم

أستاذ مساعد علاج الجذور كلية طب الأسنان جامعة عين شمس

د/عبير عبد الحكيم الجندي

مدرس علاج الجذور كلية طب الأسنان جامعة عين شمس

LIST OF CONTENTS

	Page
Introduction	1
Review of literature	3
Bond strength of resin-based root canal filling materials to root canal dentin	3
• The effect of irrigating solutions on the physical properties of dentin and smear layer removal	23
Aim of study	43
Materials and methods	44
Results	54
Discussion	69
Summary and conclusions	78
References	81
Arabic summary	

LIST OF TABLES

Table		Page
no.		no.
(1)	Classification of the samples	46
(2)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength of the six groups at the coronal segment	54
(3)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength of the six groups at the middle segment	55
(4)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength of the six groups at the apical segment	56
(5)	Means, standard deviation (SD), values, and results of comparison between overall push-out bond strength of the six groups	57
(6)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of NaOCl group	58
(7)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of EDTA group	59
(8)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of EDTA+CHX group	60
(9)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of MTAD group	61
(10)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of MTAD+CHX group	62
(11)	Means, standard deviation (SD), values, and results of comparison between push-out bond strength at the three segments of CHX group	63

(12)	Distribution of failure modes found in the cervical, middle and apical thirds of each group after the push-out test	64
(13)	Percentage of mode of failure found in each group after the push-out test	64

LIST OF FIGURES

Fig. no.		Page no.
(1)	The TwoSpense syringe attached to the Auto-Mixer, Skini syringe and Navitip.	50
(2)	Coronal, middle, and apical root sections were cut after setting of the acrylic resin	50
(3)	The upper and lower parts of the loading fixture	51
(4)	Schematic diagram describing the mould used in the push- out test	51
(5)	The three plungers used in the push out test	52
(6)	Root section subjected to compressive loading	52
(7)	Bar chart representing mean push-out bond strength of the six groups at the coronal segment	54
(8)	Bar chart representing mean push-out bond strength of the six groups at the middle segment	55
(9)	Bar chart representing mean push-out bond strength of the six groups at the apical segment	56
(10)	Bar chart representing the overall mean push-out bond strength of the six groups	57
(11)	Bar chart representing mean push-out bond strength at the three segments of NaOCl group	58
(12)	Bar chart representing mean push-out bond strength at the three segments of EDTA group	59
(13)	Bar chart representing mean push-out bond strength at the three segments of EDTA+CHX group	60
(14)	Bar chart representing means of three segments of MTAD group	61
(15)	Bar chart representing mean push-out bond strength at the three segments of MTAD+CHX group	62
(16)	Bar chart representing mean push-out bond strength at the three segments of CHX group	63

(17)	Scanning electron micrograph showing the mode of failure in NaOCl group	65
(18)	Scanning electron micrograph of the mode of failure in EDTA group	66
(19)	Scanning electron micrograph showing the mode of failure in EDTA+CHX group	66
(20)	Scanning electron micrograph showing the mode of failure in MTAD group	67
(21)	Scanning electron micrograph showing the mode of failure in MTAD+CHX group	68
(22)	Scanning electron micrograph showing the mixed mode of failure in CHX group. The surfaces of dentin were partially covered by sealer after the push-out test	68

Prevention of leakage from the oral cavity and the periradicular tissues into the root canal system and entombing any microorganisms that could not be entirely removed during cleaning and shaping procedures are the main objectives of the canal space obturation.

The ideal root canal filling material should have acceptable physico-chemical properties that allow 3D obturation of the root canal system. These properties include; insolubility in oral fluids, good adaptation to canal walls, elimination of voids and gaps, strengthening the root canal, and ease of placement and removal. Beside this, these materials should not shrink and should bond effectively to the root canal walls and the core root filling material. Adhesion of root canal sealers to root dentin is a clinically desirable property that is gaining wide interest worldwide. Upon introduction of adhesive root filling materials, it was claimed that methacrylate based sealers could minimize leakage by increasing the seal between the core root filling material and the root canal walls.

Adhesive root canal obturation systems have been recently introduced to endodontics with a specific focus on obtaining a "monoblock" in which the core material, sealing agent, and root canal dentin form a single cohesive unit. This aim has been hampered by the lack of chemical union between the polyisoprene component of gutta-percha and methacrylate-based resins. One of the strategies used to circumvent this problem, was coating gutta-percha cones with a polybutadiene-diisocyanate-methacrylate adhesive. This proprietary adhesive resin includes a hydrophobic

portion that is chemically compatible with the hydrophobic polyisoprene substrate and a hydrophilic portion that is chemically compatible with a hydrophilic methacrylate resin. With the use of this adhesive resin coating, a strong chemical union is achieved between the gutta-percha and the methacrylate resin—based sealer. This thermoplastic resin-coated gutta-percha cone is recommended for use with the hydrophilic EndoREZ sealer.

The use of some disinfectant solutions or medications during root canal preparation may have an adverse effect on adhesion of root canal filling materials to root canal dentin ^(61, 73). The removal of the smear layer before filling the root canal system may enhance the ability of filling materials to enter the dentinal tubules ^(63, 66, 74). This may increase the adhesive strength of sealers to dentin, thus improving the sealing ability of the filling. However, others found higher bond strengths when the smear layer is present ⁽⁶⁹⁾.

The effect of irrigating solutions on the bond strength of filling materials to dentin is not the same for all root canal filling materials. Therefore, different sealer types require different dentin pretreatment for optimal adhesion. However, the effect of irrigating solutions on bonding of root canal filling materials to dentin is still unclear and requires further investigations.

The purpose of this study was to:

- 1. Evaluate the effect of using different combinations of irrigating solutions on bond strength of EndoREZ root canal filling material.
- 2. Investigate the mode of bond failure in the system.

INTRODUCTION