

EFFECT OF REINFORCEMENT DETAILS ON BEHAVIOR OF REINFORCED CONCRETE DAPPED END BEAMS

 $\mathbf{B}\mathbf{y}$

Shaimaa Mohammad Elmansy Bastawy Mansour

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

EFFECT OF REINFORCEMENT DETAILS ON BEHAVIOR OF REINFORCED CONCRETE DAPPED END BEAMS

By

Shaimaa Mohammad Elmansy Bastawy Mansour

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr. Adel. Y. Akl
Prof. Dr. Osman. M.O. Ramadan

Professor of Structural Analysis
and Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr. Osman. M.O. Ramadan

Professor of Structural Analysis
and Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

Dr. Kamal. G. Metwally

Associate Professor Civil Engineering Department Faculty of Engineering, Beni-Suef University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

EFFECT OF REINFORCEMENT DETAILS ON BEHAVIOR OF REINFORCED CONCRETE DAPPED END BEAMS

By

Shaimaa Mohammad Elmansy Bastawy Mansour

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the
Examining committee

Prof. Dr. Adel. Y. Akl, thesis main advisor

Professor of Structural engineering, Cairo University

Prof. Dr. Osman. M.O. Ramadan, thesis advisor

Professor of Structural engineering, Cairo University

Prof. Dr. Magdy Kassem, Internal Examiner

Professor of Structural engineering, Cairo University

Prof. Dr. Omar Ali. M. Elnwawy, External Examiner

Professor of Structural engineering, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Shaimaa Mohammad Elmansy B. Mansour

Date of Birth: 1/2/1989 **Nationality:** Egyptian

E-mail: shaimaaelmansy@ymail.com

Phone: 01229738459

Address: 15th May City – Helwan – Cairo

Registration Date: 1/10/2011 **Awarding Date:** .../.../2017

Degree: Master of Science **Department:** Structural Engineering

Supervisors: Prof. Dr. Adel. Y. Akl

Prof. Dr. Osman. M.O. Ramadan Dr. Kamal Ghamry Metwally

(Associate Professor of Civil Engineering, Beni-Suef University)

Examiners: Prof. Dr. Adel. Y. Akl (Thesis Main Advisor)

Prof. Dr. Osman. M. O. Ramadan (Thesis Advisor)
Prof. Dr. Magdy. E. Kassem (Internal Examiner)
Prof. Dr. Omar A. M. Elnwawy (External Examiner)

(Professor of Structural engineering, Ain Shams University)

Title of Thesis:

Effect of Reinforcement Details on Behavior of Reinforced Concrete Dapped End Beams

Key Words:

Reinforced concrete; Dapped end; Finite element model; Strut and tie model

Summary:

Dapped end beams are used where the structural details require the construction depth of precast concrete floors or bridges to be reduced at beam ends. This reduction in depth results in stress concentration at recessed areas. Therefore, dapped-end beams are unusual structural elements which require special reinforcement detailing. This thesis investigates the behavior of dapped-end beams with various reinforcement details. Simply supported, reinforced concrete dapped-end beams are analyzed using the nonlinear FE program ANSYS.

ACKNOWLEDGMENTS

First, Praise and thanks to ALLAH. Then, I would like to express my deep appreciation to my supervisors without whom I could not have accomplished this thesis: **Prof. Dr. Adel Yehia Akl,** Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University, for his support and effort to finish my thesis.

Prof. Dr. Osman Ramadan, Professor of Structural Analysis and Mechanics, Faculty of Engineering, Cairo University, for his help and advice by providing me with new ideas, and his support to me through the research

Dr. Kamal Ghamry, Associate Professor, Civil Engineering Department, Faculty of Engineering, Beni-Suef University, for his hard effort and continuous encouragement to complete my thesis.

Finally, I endow this thesis to my father God bless his soul and makes the rest of Paradise, who was and still is my tutor and support and my mother may God keep her in good health. It is also an obligation to thank my sisters and my brothers for them encouragement to me to complete my thesis.

Table of Contents

ACKNOWLEDGMENTS	Ι
TABLE OF CONTENTS	II
LIST OF TABLES	\mathbf{V}
LIST OF FIGURES	VII
NOMENCLATURE	XI
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION	1
1. 1. BACKGROUND.	1
1. 2. RESEARCH OBJECTIVES	3
1. 3. SCOPE OF RESEARCH	3
1. 4. THESIS ORGANIZATION	3
CHAPTER 2: LITERATURE REVIEW	4
2. 1. INTRODUCTION	4
2. 2. PCI TREATMENT OF DAPPED-END BEAM	5
2. 2.1. Flexure and axial tension in the extended end	7
2. 2.2. Direct shear	7
2. 2.3. Diagonal tension at reentrant corner	8
2. 2.4. Diagonal tension in the extended end	8
2. 2.5. Anchorage of reinforcement	9
2. 2.6. Other considerations	9
2. 3. PREVIOUS WORKS ON DAPPED-END DESIGN	10
2. 3.1. Hamoudi, Phang, and Bierweiler [4]	10
2. 3.2. Mattock and Theryo [5]	11
2. 3.3. Lu, Lin, Hwang, and Lin [6]	16
2. 3.4. Wang, Guo, and Hoogenboom [7]	18

2. 3.5. Ahmad, Elahi, Hafeez, Fawad, and Ahsan [8]	
2. 3.6. Moreno and Meli [9]	
2. 3.7. Aswin, Mohammed, Liew, and Syed [8]	
2.3.8. Desnerck, Lees, and morley [11]	
2.4. Treatment of dapped-end beam using the strut and tie model	
2. 4.1. B- and D regions	
2. 4.2. Elements of a strut -and-tie model	
2. 5. AMERICAN CONCRETE INSTITUTE, ACI (318-11) [12]	••••
2. 5.1. Strength of strut	
2. 5.2. Strength of tie.	
2. 5.3. Strength of nodal zones	
CHAPTER 3: FINITE ELEMENT MODEL	••••
3. 1. INTRODUCTION	
3. 2. ELEMENT TYPES	
3. 2.1. Concrete Element Table	
3. 2.2. Element Table for Reinforcing steel	
3. 2.3. Element Table for steel thick plates	
3. 3. MATERIAL MODELS	
3.3.1. Concrete	
3.3.2. Steel	
3. 4. REAL CONSTANTS	
3. 5. MODELING AND METHODOLOGY	
3. 5.1. Meshing of the analyzed beams	
3. 5.2. Boundary conditions	
3. 5.3. Nonlinear solution	
3. 6. VERIFICATION EXAMPLE	
3. 6.1. Example (1)	
CHAPTER 4: PARAMETIC STUDY	•••
4. 1. INTRODUCTION	
4. 2. MATERIAL PROPERTIES	•••
4. 3. DESIGN AND DETAILS OF BEAMS	

4.3.1 Beams under uniform distributed load	
4.3.2 Beams under concentrated load	
4.3.3 Beams with diagonal reinforcement.	
CHAPTER 5: ANSYS RESULTS AND DISCUSSION	
5. 1. Introduction.	
5. 2. BEAMS UNDER UNIFORM DISTRIBUTED LOAD	
5. 2.1. Effect of a/d ratio on failure load	
5. 2.2. Effect of a/d ratio on stresses.	
5. 2.3. Effect of a/d ratio on deflection	
5. 3. BEAMS UNDER CONCENTRATED LOAD.	
5. 4. EFFECT OF WEB REINFORCEMENT ON SHEAR CAPACITY	
5. 5. CRACK PATTERN	
5.6. DIFFERENT REINFORCEMENT RECOMMENDATIONS	
CHAPTER 6: STRUT AND TIE MODELS	
6. 1. Introduction	
6. 2. SELECTION OF TRUSS GEOMETRY	
6. 3. CONSTRUCTING THE MODEL	
6. 4. RESULTS OBTAINED BY CAST PROGRAM	
6.4.1 Effect of a/d ratio	
6.4.2 Effect of web reinforcement	
6.4.3 Beams with diagonal reinforcement.	
6. 5. COMPARISON BETWEEN ANSYS AND CAST	
CHAPTER 7: SUMMARY AND CONCLUSIONS	1
7. 1. SUMMARY	
7. 2. CONCLUSIONS.	
7. 3. Note for designer	
7. 4. RECOMMENDATIONS FOR FUTURE STUDIES	
REFERENCES	

List of Tables

Table 2.1:	Summary of specimen strength and modes of failure, Mattock
	and Theryo [5]
Table 2.2:	Specimens concrete strength and reinforcement details, Lu et.
	[6]
Table 2.3:	Test resuts, Lu et al.[6]
Table 2.4:	Specimens details and failure loads, Wang et al. [7]
Table 2.5:	Reinforcement of the four specimens, Moreno and Meli [9]
Table 2.6:	Compressive strength and reinforcement details, Aswin et al.[8]
Table 2.7:	Experimental and analysis results, Aswin et al.[8]
Table 2.8:	Values of Bs according to ACI
Table 2.9:	Values of Bn according to ACI
Table 3.1:	Material properties for concrete
Table 3.2:	Material properties for reinforcement and steel plate
Table 3.3:	Comparison between Peng and ANSYS results – deflection
Table 3.4:	Comparison between Peng and ANSYS results – events
Table 3.5:	Comparison between Peng and ANSYS results – cracks
Table 4.1:	Dimensions of beams
Table 4.2:	Reinforcement details
Table 5.1:	Reinforcement stress and failure load for beams under uniform
	distributed load
Table 5.2:	Maximum deflection at failure load of beams under uniform
	load
Table 5.3:	Reinforcement stress and failure load for beams loaded with
	concentrated load
Table 5.4:	Cases of reinforcement.
Table 5.5:	ANSYS results of beams with bent bars by angle 45 ⁰
Table 5.6:	Maximum shear stress YZ at failure load for beams with bent
	bars 45 ⁰

Table 5.7:	Ratio of shear stress transferred to total depth for beams with
	bent bars 45^0
Table 5.8:	ansys results of beams with bent bars by angle 60^0
Table 5.9:	Maximum shear stress YZ at failure load for beams with bent
	bars 60 ⁰
Table 5.10:	Ratio of shear stress transferred to total depth for beams with
	bent bars 60^0
Table 5.11:	Distribution of shear force in hanger stirrups
Table 6.1:	Ultimate shear resulted by ANSYS for beams loaded by
	uniform load
Table 6.2:	Ultimate shear resulted by ANSYS for beams loaded by
	concentrated load
Table 6.3:	Forces of strut and tie truss members for beams loaded by
	uniform load
Table 6.4:	Stresses of strut and tie truss members for beams loaded by
	uniform load
Table 6.5:	Forces of strut and tie truss members for beams loaded by
	concentrated load
Table 6.6:	Stresses of strut and tie truss members for beams loaded by
	concentrated load
Table 6.7:	Forces and stress in truss members for beam (B-45 ⁰) ₁
Table 6.8:	Comparison between ANSYS and CAST for steel stress for
	beams loaded by uniform load
Table 6.9:	Comparison between ANSYS and CAST for steel stress for
	beams loaded by concentrated load
Table 6.10:	The summary of results

List of Figures

Figure 1.1:	Uses of dapped-end beams, Mohamed and Elliott[2]: (a) Drop-	
	in beams between corbels; (b) Beam-to-beam connection; and	
	(c) Suspended spans between cantilevers	2
Figure 2.1:	Bridge beams with dapped ends, Larson [3]	4
Figure 2.2:	Potential failure modes and required reinforcement (Adapted	
	from PCI Design Handbook 2010): (a) Case of reinforcement	
	by using closed stirrups (A_{sh}) and longitudinal bars $(A_{sh'})$; (b)	
	Case of reinforcemet by using A_{sh} and $A_{sh'}$ in C-shape	5
Figure 2.3:	Details of potential failure modes and required reinforcement,	
	Larson [3]	6
Figure 2.4	Typical test beam, Mattoch and Theryo [5]	11
Figure 2.5:	Typical details of dapped-end reinforcement schemes, Mattock	
	and Theryo [5]: (a) Reinforcement scheme 1; (b)	
	Reinforcement scheme 2; (c) Reinforcement scheme 3; (d)	
	Reinforcement scheme 4; (e) Reinforcement scheme 5	14
Figure 2.6:	Detailing of specimen, Lu et al. [6]	16
Figure 2.7:	Specimen geometry and reinforcement details, Wang et al. [7]	19
Figure 2.8:	The position of h_1 and a_o , Wang et al. [7]	21
Figure 2.9:	Categorization of dapped end beam models, Ahmad [8]	22
Figure 2.10:	Truss layout of strut and tie model (STM), Ahmad [8]	22
Figure 2.11:	Dimensions of the model beams, Moreno and Meli [9]	23
Figure 2.12:	Geometry and Dimensions of the experimental half-joint	
	specimen, Desnerck et al. [11]	27
Figure 2.13:	Reinforcement layouts for the different scenarios, Desnerck et	
	al. [11]: (a) NS-REF; (b) NS-NU; (c) NS-ND; and (d) NS-RS	27

Figure 2.14:	Examples of strut and tie models, CAC [12]: (i) Deep beam
	with unsymmetrical loads; (ii) Corbel; (iii) Continuous deep
	beam; (iv) Footing; (v) Deep beam with opening; and (vi)
	Dapped end of beam
Figure 2.15:	The identification of B-and D- region, Schlaich et al. [14]
Figure 2.16:	Dimension of dapped end beam, Shah et al. [13]
Figure 2.17:	Illustration of the different components of a strut-and-tie
	model using a deep beam, Martin and sanders [16]
Figure 2.18:	Types of struts, Martin and sanders [16]: a) Prismatic; b) Bottle
	shaped; c) compression fan
Figure 2.19:	Types of node, ACI [15]: (a) C-C-C Node; (b) C-C-T Node;
	(c) C-T-T Node; (d) T-T-T Node
Figure 3.1:	SOLID 65 geometry, ANSYS 14.5 [18]
Figure 3.2:	SOLID 65 Stress output, ANSYS 14.5 [18]
Figure 3.3:	LINK 180 geometry, ANSYS 14.5 [18]
Figure 3.4:	LINK 180 stress output, ANSYS 14.5 [18]
Figure 3.5:	SOLID 185 geometry, ANSYS 14.5 [18]
Figure 3.6:	SOLID 185 layered structural solid stress output, ANSYS 14.5
	[18]
Figure 3.7:	The simplified compressive uniaxial stress-strain curve for
	concrete
Figure 3.8:	3-D failure surface for concrete, ANSYS 14.5 [18]
Figure 3.9:	The stress-strain curve for steel reinforcement
Figure 3.10:	Meshing of dapped-end of beam
Figure 3.11:	Boundary Conditions
Figure 3.12:	Reinforcing details for Peng beam: a) plan of beam; b) sec 1-1
	of beam; c) sec 2-2 of beam
Figure 4.1:	Reinforcement details for beams with longitudinal bars
Figure 4.2:	Beams under uniform distributed load
Figure 4.3:	Beams under central concentrated load.
Figure 4.4:	Details of diagonal reinforcement: a- (B-30 ⁰) ₁ diagonal bars
	without hanger: b- (B-30 ⁰) ₂ diagonal hars with one hanger: c-

	$(B-45^{\circ})_1$ diagonal bars without hanger; d- $(B-45^{\circ})_2$ diagonal
	bars with one hanger
Figure 5.1:	Load - stress curve in A_{ν} reinforcement for beams under
	uniform load
Figure 5.2:	Load - stress curve in A _s reinforcement for beams under
	uniform load
Figure 5.3:	Load - stress curve in hanger reinforcement for beams under
	uniform load
Figure 5.4:	Load - stress curve in U-bars reinforcement for beams under
	uniform load
Figure 5.5:	Load - stress curve in main stirrups reinforcement for beams
	under uniform load
Figure 5.6:	Load - stress curve in main flexure reinforcement for beams
	under uniform load
Figure 5.7:	The nodal SX concrete stress of beams at failure load for
	beams under uniform load.
Figure 5.8:	Deformed shape of beams under uniform load
Figure 5.9:	Load - stress curve at main flexure reinforcement bars for B-
	0.5
Figure 5.10:	Load – stress curve at Av reinforcement for B-0.5
Figure 5.11:	Load – stress curve at As reinforcement for B-0.5
Figure 5.12:	Load – stress curve at hanger reinforcement for B-0.5
Figure 5.13:	Load – stress curve at U-bars reinforcement for B-0.5
Figure 5.14:	Load – stress curve at main stirrups reinforcement for B-0.5
Figure 5.15:	Crack pattern of B-0.5 at different load
Figure 5.16:	Load-deflection curve for beams with bent bars 45 ⁰
Figure 5.17:	Sections of beams
Figure 5.18:	Shear stress YZ in BN1 at failure load: (a) Shear stress YZ at
	failure load in Sec (1-1); (b) Shear stress YZ at failure load in

	Sec (4-4)
Figure 5.19:	Shear stress YZ in BN2 at failure load: (a) Shear stress YZ at failure load in Sec (1-1); (b) Shear stress YZ at failure load in Sec (4-4)
Figure 5.20:	Shear stress YZ in BN3 at failure load: (a) Shear stress YZ at failure load in Sec (1-1); (b) Shear stress YZ at failure load in Sec (4-4)
Figure 5.21:	Shear stress YZ in BN4 at failure load: a) Shear stress YZ at failure load in Sec (1-1); (b) Shear stress YZ at failure load in Sec (4-4)
Figure 5.22	Shear stress YZ in BN5 at failure load: (a) Shear stress YZ at failure load in Sec (1-1); (b) Shear stress YZ at failure load in Sec (4-4)
Figure 5.23:	Load – Deflection curve for beams with bent bars by 60^0
Figure 6.1:	Typical strut and tie models: (a) and (c) By using longitudinal bars and hanger reinforcement; (b) By using diagonal reinforcement.
Figure 6.2:	Truss geometry: a- truss type (a); b- truss type (b)
Figure 6.3:	The results from CAST for beams loaded by uniform load: (a) The results from CAST for B-0.5; (b) The results from CAST for B-0.61; (C) The results from CAST for B-0.72; (d)The results from CAST for B-0.83; (e)The results from CAST for B-0.94; (f) The results from CAST for B-1.05
Figure 6.4:	The results from CAST for beams loaded by concentrated load: (a) The results from CAST for B-0.5; (b) The results from CAST for B-0.61; (c) The results from CAST for B-0.72; (d) The results from CAST for B-0.83; (e) The results from CAST for B-0.94; (f) The results from CAST for B-1.05
Figure 6.5:	The results from CAST for (B-45 ⁰) ₁