Assessment of Hematological Side Effects of Combined Pegylated Interferon & Ribavirin in Treatment of HCV in Egypt

Thesis Submitted for partial fulfillment of Master Degree in Tropical Medicine

By

Mostafa Abdelfattah Ismail Ahmed

M.B.B.CH

Assiut University

Supervised by

Professor Doctor/ Eman Mahmoud Fathy Barakat

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Doctor / Runia Fouad El-Folly

Assistant Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Doctor / Adham Mohamed Hamdan EL-Nakeeb

M.D. Tropical Medicine

Head of Hepatology & Gastroenterology Department

Sohag Center of Cardiac and Digestive System

Specialized Medical Centers, Ministry of Health and Population

Ain Shams University 2014

Acknowledgement

I would like to express my deepest gratitude to **Professor Dr. Eman**Mahmoud fathy Barakat Professor of Tropical Medicine, Ain Shams

University for her valuable help, expert advice and continuous encouragement and support through this work.

I feel greatly thankful for her great effort.

I am greatly indebted to **Dr. Runia Fouad El-Folly**, Assistant Professor of Tropical Medicine, Ain shams University. I would like to express my sincere thanks for her great help, advice, support and for her great effort.

Finally, I would like to express my sincere thanks to **Dr. Adham**Mohamed Hamdan EL-Nakeeb M.D. Tropical Medicine. Head of
hepatology and gastroenterology department Sohag center of cardiac and
digestive system ministry of health.

Mostafa Abdel Fattah 2014

Contents

List of Tables	I-III
List of Figures	IV
List of abbreviations	V-VI
Protocol	
Introduction	1
Aim of Work	4
Review – Chapter I: HCV Infection	5
Chapter II: Treatment of HCV	33
Chapter III: Haematological side effects of Interferone	
and Ribavirin	60
Patients and Methods	93
Results	105
Discussion	125
Summary	134
Conclusions	137
Recommendations	138
References	139
Arabic summary	

List of Tables

Tables of Review

Table (I)	Ishak Modified HAI Grading:	41
	Necroinflammatory Scores	
Table (II)	Ishak Modified Staging: architectural	42
	changes, fibrosis and cirrhosis	
Table (III)	WHO's Hemoglobin thresholds used to	63
	define anemia	
Table (IV)	Dosing reductions for Pegylated	74
	Interferon and Ribavirin in Response to	
	Treatment-Induced anemia	
Table (V)	Comparison between coagulation tests	82
Table (VI)	Infections occurring among 119 patients	89
	treated with pegylated interferon and	
	ribavirin.	
Table (VII)	Dose Reductions for Pegylated Interferon	92
	and Ribavirin in Response to Treatment-	
	Induced leucopenia and neutropenia	
Table (VIII)	Steatosis level or degree	97
Table (IX)	Metavir classification for staging of	98
	hepatitis C liver disease	

Tables of Results

Table (1)	Demographic characteristics and BMI of	106
	the studied cases	
Table (2)	Clinical data of the studied cases	106
Table (3)	Laboratory findings of the studied cases	107
	before treatment	
Table (4)	Ultrasonographic findings of the studied	108
	cases	
Table (5)	Histopathological findings of the	109
	studied cases	
Table (6):	Assessment of the virological response	110
	during follow up within the combined	
	therapy	
Table (7)	Final response to the combined therapy	111
Table (8)	The prevalence of hematological side	112
	effects of the combined therapy	
Table (9)	The incidence of hematological side	113
	effects of the combined therapy	
Table (10)	Fate of hematological side effects of the	114
	combined therapy	
Table (11)	Demographic characteristics BMI &	115
	PCR among the different virological	
	responses	
Table (12)	Histopathological findings of the	116
	studied cases according to the different	
	virological responses	

Table (13)	The frequency of hematological side	117
	effects among studied groups according	
	to the different virological responses	
Table (14)	Time and fate of treatment of	118
	hematological side effects among	
	studied groups	
Table (15)	Logistic regression for risk factors for	118
	being responder	
Table (16)	Comparison between cases with and	119
	without hematological side effects as	
	regards to demographic characteristics	
Table (17)	Comparison between cases with and	120
	without hematological side effects as	
	regards to laboratory findings & GMI	
Table (18)	Comparison between cases with and	121
	without hematological side effects as	
	regards to abdominal US findings	
Table (19)	Comparison between cases with and	122
	without hematological side effects as	
	regards to histopathological findings	
Table (20)	Comparison between cases with and	123
	without hematological side effects as	
	regards to their positive HCV PCR at	
	weeks 4, 12, 48 and 72	
Table (21)	Logistic regression for risk factors for	124
	having hematological side effects	

List of Figures

Figures of Review

Figure (I)	Structure of RNA genome of hepatitis C	6
	virus	
Figure (II)	Natural history of HCV	22
Figure (III)	Hepatitis C virus genome and potential	51
	drug discovery targets.	
Figure (IV)	Characteristics needed for future DAA	53
	drugs	

Figures of Results

Figure (1)	Sex distribution among the studied cases	106
Figure (2)	Virological Response during follow up	110
Figure (3)	Final response to the combined therapy	111
Figure (4)	The prevalence of hematological side	112
	effects of the combined therapy	
Figure (5)	The incidence of hematological side	113
	effects of the combined therapy	
Figure (6)	Fate of hematological side effects of the	114
	combined therapy	
Figure (7)	Hematological side effects as regards to	123
	their positive HCV PCR at weeks 4, 12,	
	48 and 72	

List of Abbreviations

AA	Amino acid
AIHA	Autoimmune hemolytic anemia
ALT	Alanine aminotransferase
ANA	Anti-nuclear antibody
Anti HBC	Hepatitis(B) core antibody
AST	Aspartate aminotransferase
CDC	Centers for disease control and prevention.
CHF	Congestive heart failure
CITP	Chronic idiopathic thrombocytopenia
CLD	Chronic liver disease
CTL	Cytotoxic t-lymphocytes
DAA	Direct acting antiviral
ECG	Electrocardiogram
ETR	End of treatment response
EVR	End virological response
FDA	Food and drug administration
GP	Glycoprotein
Hb	Hemoglobin
HBs Ag	Hepatitis (B) surface antigen
HBV	Hepatitis B Virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C Virus
HCWs	Health care workers
HD	Haemodialysis
HIV	Human Immunodeficiency Virus
IDUs	Intra venous drug users
IFN	Interferon
IRES	internal ribosome entry site
IVIG	Intravenous immunoglobulins

NI	Nucleoside inhibitors
NK	Natural killer
NNI	Non nucleoside inhibitors
ORF	Open reading frame
PAMPs	pathogen-associated molecular patterns
PAT	Parentral antishistosomal therapy
PBMC	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PEG-IFN	Pegylated Interferon
PEG-	Pegylated recombinant human megakaryocyte
rhMGDF	growth and development factor
PI	Protease inhibitors
PT	Prothrombin time
RBCs	Red blood cells
RBV	Ribavirin
RDW	Red cell distribution width
RNA	Ribonucleic amino-acid
RVR	Rapid virological response
SNPs	Single nucleotide polymorphisms
SOC	Standard of care
SVR	Sustained virological response
TCP	Thrombocytopenia
TIBC	Total iron binding capacity
TNF	Tumor necrosis factor
TPO	Thrombopoietin
TSH	Thyroid stimulating hormone
UTR	Untranslated region
WBC	White blood cell
WHO	World Health Organization

Assessment of Hematological Side Effects of Combined Pegylated Interferon & Ribavirin in Treatment of HCV in Egypt

Thesis Submitted for partial fulfillment of master degree in Tropical Medicine

By

Mostafa Abdelfattah Ismail Ahmed

M.B.B.CH

Assiut University

Supervised by

Doctor/ Eman Mahmoud Fathy Barakat

Assistant Professor of Tropical Medicine Faculty of Medicine-Ain Shams University

Doctor/ Runia Fouad El-Folly

Lecturer of Tropical Medicine Faculty of Medicine-Ain Shams University

Doctor / Adham Mohamed Hamdan EL-Nakeeb

M.D. Tropical Medicine

Head of Hepatology & Gastroenterology Department

Sohag Center of Cardiac and Digestive System

Specialized Medical Centers, Ministry of Health and Population

Faculty of Medicine

Ain Shams University 2011

Introduction:

Hepatitis C virus (HCV) infection is a global health problem, with an infection rate of 3% of the world's population equating to 170-200 million individuals (*WHO*, 2009). Egypt has the highest prevalence of hepatitis C in the world, reaching 13% of the population equating to an estimated 10 million anti-HCV-positive persons (*Deuffic-Burban*, 2006; *Mohamed*, 2004).

Almost 90% of HCV infections are caused by genotype 4, which is the major cause of the high prevalence of liver cirrhosis, hepatocellular carcinoma and liver transplantation in the country (*Ezzat et al.*, 2005; *Kamal et al.*, 2008)

The currently recommended combination therapy of pegylated IFN and ribavirin (1000–1200 mg/day) for 48 weeks increased SVR rates to almost 40% (*Kamal and Nasser*, 2008). Larger controlled well-designed randomized clinical trials reported higher SVR rates ranging between 48 and 79% in patients receiving PEG-IFN a-2b plus ribavirin (800–1200 mg/day) for 48 weeks (*Ferrenci and Laferl*, 2008; *Jessner et al.*, 2008; *El-Zayadi et al.*, 2005).

Sustained virologic response rates in chronic hepatitis C genotype 4 are better than those achieved in genotype 1 (*Kamal et al.*, 2008; Ferrenci et al., 2008; El-Zayadi et al., 2005).

In patients with chronic hepatitis C, the on-treatment response at weeks 4 and 12 of pegylated interferon plus ribavirin combination therapy may be used to predict the probability of a sustained virologic response (SVR) (*Jensen et al.*, 2006).

Unfortunately, peg-interferon plus ribavirin therapy can be associated with side effects, some of which may lead to dose reductions, premature discontinuation of the drug, and subsequent treatment failure (*Sulkowski et al.*, 2004). IFN induced thrombocytopenia and leucopenia is common whereas anaemia is more a sequela of combination therapy with ribavirin (*Russo and Fried*, 2003; *Fried et al* 2002).

Thrombocytopenia is mild in most cases, amounting to a decrease in peripheral platelet count of 10–50% but, when severe, can lead to bleeding complications (*Soza et al.*, *2002*; *Wang et al.*, *2000*) and discontinuation of IFN therapy (*McHutchison et al.*, *2002*).

Absolute neutrophil and lymphocyte counts typically decrease by 30–50% of baseline values during IFN therapy but this is usually not associated with infection (*Schmid et al.*, 2005).

The main mechanism leading to cytopenia during IFN therapy seems to be bone marrow suppression by IFN- (*Russo and Fried*, 2003). This suppressive action can be observed for pluripotent progenitor cells of all lineages (*Soza et al.*, 2002). Immune mediated haematological toxicity and capillary sequestration of platelets and white blood cells (*Wang et al.*, 2000) have been proposed as additional causes for severe thrombocytopenia and leucopenia during IFN therapy.

Ribavirin is associated with dose-dependent hemolytic anemia, which occurs in a considerable proportion of treated patients (*Sulkowski et al.*, 2004). Although treatment related

side effects can make therapy unpleasant, most do not necessarily lead to disruption or discontinuation of therapy. However, hemolytic anemia associated with ribavirin frequently leads to ribavirin dose reductions. Indeed, in a peginterferon alfa-2a pivotal trial, it was reported that patients receiving peg-interferon alfa-2a plus ribavirin had a median maximal decrease in hemoglobin of 3.7 g/dL, and this resulted in a ribavirin dose modification in 22% of patients (*Fried et al.*, 2002).

Retrospective analyses of patients receiving combination therapy with ribavirin and interferon alfa-2b confirm the frequent occurrence of anemia. More than 50% of patients experienced a decrease in hemoglobin of 3.0 g/dL (*Sulkowski et al., 2004*), and, in another study, by 24 weeks of treatment ribavirin dose reduction was required in 27.6% of patients, with a mean maximal decrease in hemoglobin of 4.0 g/dL (*Takaki et al., 2004*).

Khuroo and Dahab, (2004) confirmed the importance of adequate ribavirin dosing, with higher SVR rates in patients receiving PEG-IFN-a in combination with high-dose (1000–1200 mg/day) than low-dose (800 mg/day) ribavirin. The traditional approach to hematologic toxicity has been reducing the dose of the offending antiviral; however, lower doses also may reduce treatment efficacy (Davis et al., 2003).

The use of epoetin alfa (Epogen) at a dose of 40,000 units subcutaneously once per week is effective in increasing the hematocrit level in patients receiving treatment and in reducing

the number of patients who require reductions or discontinuations of their ribavirin (Afdhal et al., 2004).

Interferon-induced neutropenia may put the patient at increased risk for bacterial infections, although other data suggest this risk is small (*Soza et al.*, 2002).

Granulocyte colony-stimulating factor (G-CSF) treatment may prove useful in increasing the white blood cell count, and a reasonable approach is to maintain the neutrophil count above 500 per μ L (0.5 × 10⁹ per L). Studies clarifying the optimal dose and the levels of neutropenia at which to intervene are not yet available. Most of the increased risk of infection is confined to those with liver cirrhosis, suppressed immune systems, or profound neutropenia. The use of G-CSF or epoetin alfa will substantially increase the overall cost of treatment. Treatment-induced thrombocytopenia usually is mild and rarely leads to clinically significant bleeding (*Ward and Kugelmas*, 2005).

In Egypt, the availability and cost of treatment for hepatitis C in is quite prohibitive. It is thus very important to optimize treatment to increase the chances of a sustained virologic response. Early prediction and management of adverse events is thus crucial for therapy adherence and better outcome. The frequency of hematologic adverse events has not been previously studied in chronic hepatitis C genotype 4 patients and no predictors for interferon induced anemia, leucopenia or thrombocytopenia have been identified in those patients.

Aim of The Work

The current study is designed to assess:

- 1- The incidence and prevalence of hematological side effects of combined pegylated interferon and ribavirin during treatment of Hepatitis (C) virus infection.
- 2- The impact of hematological side effects of combined pegylated interferon and ribavirin on ETR, RVR, EVR and SVR during treatment of Hepatitis (C) virus infection.