Prevalence of Keratoconus in Egyptian Astigmatic Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

Presented ByHadir Mohamed Mohamed Mostafa Metwally

M.B.B.ch. Faculty of Medicine
Ain Shams University

Under Supervision of Prof.Dr. Shaker Ahmed Khedr

Professor of Ophthalmology Faculty of Medicine-Ain Shams University

Ass. Prof. Dr. Mona Mohamed El-Feky

Assistant Professor of Ophthalmology Faculty of Medicine-Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo-Egypt-2017

سورة البقرة الآية: ٣٢

Acknowledgments

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Shaker Ahmed Khedr,**Professor of Ophthalmology Faculty of Medicine-Ain Shams
University for his meticulous supervision, kind guidance,
valuable instructions and generous help.

Special thanks are due to Ass. Prof. Dr. Mona Mohamed El-Feky, Assistant Professor of Ophthalmology Faculty of Medicine-Ain Shams University for her sincere efforts, fruitful encouragement.

Hadir Mohamed Metwally

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Graph	v
List of Abbreviations	vi
Protocol	
Introduction	1
Aim of the Work	12
Review of Literature	
Anatomy	13
 Pathogenesis 	21
Clinical Picture	27
Role of Pentacam in Diagnosis	47
Patients and Methods	67
Results	69
Discussion	82
Conclusion	88
Recommendations	90
Summary	91
References	
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of keratoconus	29
Table (2):	Factors construct keratoconus levelin	ıg60
Table (3):	Comparison between male and fe regard keratoconus among the study.	
Table (4):	Comparison between studied gregard incidence of KC and K reading	-
Table (5):	Comparison between studied gregard astigmatism and pachymetery	-
Table (6):	Comparison between studied gregard keratoconus gradings	-
Table (7):	Comparison between different pararter and +ve keratoconus	
Table (8):	Comparison between keratoconus gr regard all parameters	O

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Histologic full-thickness section normal cornea, with arrows and boxes indicating its different layer cells	text s and
Figure (2):	Magnified view of the corneal epith with three different morphologic cell	elium
Figure (3):	A thin monolayer of corneal endot cells (arrow) is adjacent to Desce membrane (double arrows)	helial emet's
Figure (4):	Anatomy of the cornea	
Figure (4):	Dua's layer	
Figure (6):	The three topographical shape advanced keratoconus: nipple, oval	es of
Figure (7):	globus	29 ws a
Figure (8):	high with-the-rule corneal astigmat Photokeratoscopy of an oval shaped shows the inferior-nasal steepening	l cone
Figure (9):	Due to the size of the globus-sl keratoconus, all nine rings of photokeratoscopy image are encomp by the conical area and no "island normal mid-peripheral cornea are se	haped the assed ds" of
Figure (10):	Fleisher ring	
Figure (10):	Vogt Striae	
Figure (12):	Corneal thinning	
Figure (13):	Corneal scarring	
Figure (14):	Munson's sign	
Figure (15):	Rizzuti's sign	
Figure (16):	Corneal hydrops	
Figure (17):	The Pentacam (the device of the stu	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (18):	The Pentacam takes multiple samples	_
Figure (19):	A Scheimpflug image	
Figure (20):	Corneal pachymetry data display	
_ -g (,	Pentacam showing concentric	•
	around the thinnest location	•
Figure (21):	Corneal-topography	50
Figure (22):	3D AC analysis by Pentacam	
Figure (23):	Densitometry display: evaluation	
_	line	51
Figure (24):	A Pentacam refractive 4-map of n	ormal
	right eye	53
Figure (25):	A Pentacam 4 map of left kerate	oconic
	eye	
Figure (26):	Two Pentacam single pachymetry	-
	of the same right normal eye in	-
	(24)	
Figure (27):	A Pentacam Refractive display of	
F! (00)	same keratoconic left eye in figure	
Figure (28):	A Pentacam Pachymetric display	
	same normal right eye in figure	
	The corneal thickness at the thi	
	point is 534 m and it increases in periphery following the normal pa	
	The bottom table gives corneal thic	
	values at different rings and	
	progression in percentages	
Figure (29):	A Pentacam topometric display n	
g	right eye	
Figure (30):	By pachymetric progression di	
5 . /	corneal progression thickness	
	detect and follow up keratoconus	=
Figure (31):	Belin and Ambrosia display	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (32):	Schematic drawing showing inclusion of the cone in the refe	
Figure (33):	surface calculation will influence BFS and hide the corneal abnormal Schematic drawing showing exclusion of the cone from the refe surface calculation will influence	e the ity63 how rence
Figure (34):	best-fit sphere and highlight the co abnormality	64 how affect
Figure (35):	Device used in the study	68
Figure (36):	4 maps selectable, patient no.(43) gr	r.(B) 69
Figure (37):	Refractive display, patient no.(60) g	r.(B)69

List of Graph

Graph. No.	Title	Page	No.
Graph (1):	Incidence of keratoconu		72
Graph (2):	Difference between studies regard K reading.		72
Graph (3):	Distribution of kertoconus study groups		74
Graph (4):	Difference between positive keratoconus as regard K-r	•	76
Graph (5):	Difference between positive keratoconus as regard asti	U	76
Graph (6):	Difference between positive keratoconus as regard puthinnest point of cornea	pachmetery and	77
Graph (7):	Difference between keratoregard K1- reading	•	79
Graph (8):	Difference between keratoregard K2- reading	O	79
Graph (9):	Difference between keratoregard astigmatism	_	80
Graph (10):	Difference between keratoregard pachymetery		80
Graph (11):	Difference between keratoregard thinnest point in co	O	81

List of Abbreviations

Abb.	Full term
AC	Anterior Chamber
<i>AST</i>	the degree of the regular corneal astigmatism
<i>BB</i>	
	Best Fit Sphere
	best-fit toric and aspheric
	Center Keratoconus-Index
	Collaborative longitudinal evaluation of
	keratoconus
CXL	Cross Linking
D	_
	Deep anterior lamellar keratoplasty
	Enhanced Best Fit Sphere
	Eccentricity value in 30 degree
	Ehlers Danlos syndrome
	Floppy Eyelid syndrome
	Fuchs' heterochromic iridocyclitis
<i>ICRS</i>	intracorneal ring segments
	Immunoglobulin A
	Immunoglobulin E
	Immunoglobulin G
	Immunoglobulin M
	Index of Height Asymmetry
<i>IL</i>	Interleukin
<i>IOP</i>	Intraocular Pressure
<i>IS</i>	inferior–superior dioptric asymmetry
<i>ISV</i>	Index of Surface Variance
<i>IVA</i>	Index of Vertical Asymmetry
<i>KC</i>	Keratoconus
<i>Kd</i>	Kilo Dalton
<i>KI</i>	Keratoconus-Index
<i>KISA</i>	KC percentage index
	Mean keratometery
<i>KPD</i>	Keratometric power difference

List of Abbreviations Cont...

Abb.	Full term
KSS	Keratoconus Severity Score
<i>MMPS</i>	Matrix metalloproteinases
<i>OCT</i>	Optical coherence tomography
<i>PIOL</i>	Phakic Intraocular Lens
<i>PKP</i>	Penetrating Keratoplasty
<i>PRK</i>	Photorefractive keratectomy
<i>QS</i>	Quality specification of examination
<i>Rm</i>	Radius of curvature in 3.0 mm zone
<i>RMin</i>	Radii minimum
<i>Rper</i>	Mean radius of curvature of 7.0-9.0 ring area
_	Irregular astigmatism occurring in KC
<i>TIMP</i>	Tissue inhibitor of metalloproteinase
	Tumor necrosis factor

Abstract

Purpose: Screening of Egyptian patients with corneal astigmatism for early diagnosis and study the prevalence of keratoconus by using Scheimpflug imaging device (pentacam).

Methods: One hundred and sixty eyes of 87 subjects with astigmatism ≥1.5D were included in the study. All subjects underwent a complete ophthalmic examination which included refraction, visual acuity measurement, slit lamp biomicroscopy, retinoscopy, fundus examination, conventional corneal topography and elevation-based topography with Pentacam.

Results: Mean age of the study population was 30 ± 10 (range 20-40) years which included 53 (56.4%) female and 41 (43.6%) male subjects. Maximum corneal power and keratometeric astigmatism values were significantly higher and pachymetry was significantly thinner in eyes with clinical KC than normal astigmatic eyes.

Conclusion: The current study showed that subjects with 1.5D or more of astigmatism who present to outpatient clinics should undergo corneal topography screening for early diagnosis of KC even if visual acuity is not affected. Pentacam may provide more accurate information about anterior and posterior corneal anatomy especially in suspect eyes.

Keywords: Keratoconus – Pentacam – Myopic astigmatism

Introduction

ectaticdisease (Rabinowitz, 1998; Romero-Jimenez et al., 2010). It is non-inflammatory and localized paraxial stromal thinning of the cornea, which often results in bilateral and asymmetrical corneal distortion and anterior corneal protrusion. Patients with corneal protrusion often develop high myopia and irregular astigmatism resulting in significant impairment of visual acuity (Rabinowitz, 1998). Keratoconus usually appears during puberty or the second decade of the life and, normally progresses for the following two decades until it stabilizes. In severe cases, corneal scarring further contributes to vision loss (Matalia, 2013).

A genetic predisposition to keratoconus is well documented with increased incidence in some familial groups, and numerous reports of correspondence between monozygotic twins (Karimian et al., 2008). Approximately 6% - 23.5% of patients with keratoconushave a positive family history (Hughes et al., 2003; Rabinowitz et al., 2003; Karimian et al., 2008). Similar to other ocular genetic disorders, studies have indicated that relatives of keratoconus patients have an elevated risk compared to those with unaffected relatives (Rabinowitz et al., 1998; Rabinowitz et al., 2003). The majority of familial keratoconus is inherited through an autosomal dominant pattern (Stabuc-Silih et al., 2010; Romero-Jimenez et al., 2010). Other

models of inheritance such as autosomal recessive pattern have been suggested, especially in populations of high consanguinity (Stabuc-Silih et al., 2010; Abu-Amero et al., 2011).

Diagnosis of keratoconus has greatly improved from simple clinical diagnosis with the advent of modern imaging modalities. These diagnostic devices have allowed us to diagnose the disease much earlier, and newer treatment modalities have been used. There are variety of diagnostic imaging tools to diagnose subtle abnormalities in corneal curvature, thickness, and tissue architecture like photographic placido disk studies, keratometry, photokeratoscopy and finally computer assisted videokeratoscopy (Matalia, 2013).

One of the most important diagnostic imaging tools for keratoconus, has evolved through placido disk based devices to slit scanning and Scheimpflug imaging devices. Although placido disc based devices are still a highly sensitive tool to diagnose curvature changes on the anterior corneal surface, they might miss signs of early posterior corneal ectasia. Newer devices such as Scheimpflug imaging and optical coherence tomography(OCT) are useful adjuncts in imaging these early indicators of keratectasia (Matalia, 2013).

Over the last decade, outcome data have accumulated for new interventions in keratoconus which promise to reduce transplantation rates significantly, arrest disease progression and save many patients from long-term reliance on rigid contact

lens wear. These interventions include corneal collagen crosslinking (CXL), intracorneal ring segments (ICRS), topographic photorefractive keratectomy (topoPRK), and phakic intraocular lens implantation (pIOL). None of these recent treatment modalities are applicable to advanced (stage IV) disease with corneal scarring, in this case corneal transplantation is indicated by deep anterior lamellar keratoplasty (DALK) up to peneterating keratoplasty (PKP) (Shortt et al., 2013).

The overall prevalence of keratoconus in the general population has been estimated to be between 5 and 23 per 10,000, respectively with both sexes equally affected (Espandar, 2010). However, it would not be surprising to expect an increase in the incidence and prevalence rates of this disease nowadays with the current wide spread use of newer diagnostic devices leading to early diagnosis (Matalia, 2013).