

An Applied Archaeometric Study on the Evaluation of Chemical Degradation of Wooden Icons Due to the Stratigraphic Structure and the Appropriate Treatment Methods Applied on a Selected Object Dating Back to the 18th Century

Submitted by

AbdelRahman Medhat Mohamed Ibrahim

Conservator at the Conservation Center Grand Egyptian Museum-Ministry of Antiquities Affairs

Thesis submitted for the fulfillments of the requirements for the award of the degree of

Doctoral of Philosophy (PhD) of Art

ln

Conservation Science From Faculty of Archaeology

Supervision Committee

Prof. Dr. Mona Fouad Ali

Conservation Department - Faculty of. Archaeology.

Cairo University

Dr. Mona Hussien Abdel-Ghani

Conservation Department - Faculty of. Archaeology.

Cairo University

Prof. Dr. Khaled Ibrahim Mostafa El-Nagar

National Institute of Standards

Abstract

Wooden icons represent an essential part of Egyptian cultural heritage and have a major historical and artistic significance. This type of icons is to be found in most churches, monasteries and museums, however, historical, archaeometerical and conservation studies have not been carried out to date.

Differences between the wooden icons and the other types of icons are known. The paint layers of the wooden icons are either executed on the wooden panels or on thin gesso layers with the absence of a canvas layer. On the contrary, the other types of icons are applied either on gesso, leather or paper ground layers applied on top of a canvas layer.

Deterioration phenomena of wooden icons are also different. The main aims of this thesis are to study the chemical degradation of the wooden icons due to their specific overlapping structure and to set conservation methodologies which are compatible with their chemical and physical status

The adequate conservation of wooden icons requires good knowledge of the chemistry and deterioration mechanism of objects of complex structure. This knowledge can only be acquired through appropriate analyses of the materials used. Among the available analyses, the suitability of the vibrational spectroscopy and ultraviolet—visible spectroscopy have not yet received full assessment. This dissertation aims to fill up this gap in Egypt

Among the different methods of spectroscopy techniques used for conservation purposes, the application of ultraviolet–visible spectroscopy on composed objects is uncommon, while Raman spectroscopy is usually employed for inorganic materials. It would thus be interesting to test the pertinence of these two methods in the analysis of organic composed samples. The present dissertation proposes to apply them on the protein-based media and other components of wooden icons. Their advantages shall be evaluated, with a view of elaborating the treatments best compatible with wooden icons.

Key Words

Argentine
Consolidants

Egg white
Egg yolk

Fluorescence spectroscopy

Fourier transform infrared spectroscopy

Raman Spectroscopy

Ultraviolet—visible spectroscopy

Vibrational spectroscopy

Wooden Icon

DEDICATION

I praise almighty Allah for giving me the strength, passion, courage and guidance to achieve this work, despite all difficulties.

I would like to express my profound gratitude
and love to my parents who have supported me
emotionally, organisationally and financially in various ways
throughout the daunting yet entertaining time I have spent with this research.

Acknowledgements

Above all, I would like to express my deep gratitude to my principal supervisor, Professor Dr. Mona Fouad, for encouraging me to undertake the present research project. I tremendously enjoyed our discussions, her enthusiasm and the easiness with which she shrugged off adversities and gently let me know that they were "also part of becoming a researcher". My co-supervisor, Dr. Mona Hussien Abdel-Ghani, has certainly been no less fundamental in shaping my work. I am also indebted to my co-supervisor Professor .Dr. Khaled El-Nagar, for his advice and his sense of humour which has lightened up many emails.

Although not formally my supervisor, Dr. Anita Quiles supported me almost as much all the way, and helped me with a wide range of issues. Whenever I needed different approaches, samples and tools for my experiments, she was always there for my research.

My colleagues at IFAO also deserve high praise for welcoming a conservator and treating him as one of them. I have enjoyed my time with all of you immensely. Special thanks to Prof .Dr. Lauren Bavay Director at IFAO, Dr.Beatrix Midant-Reynes-(vice director), Dr.Nicolas Michel director of studies, †Michel Wuttmann vice Former head of Conservation department and C14 dating lab -IFAO, Nadine Monier. Elna Rouchard, Julien Auber, Marie-Lys Arnette and Abied Mahmoud.

Dr. Ruey-Lin Chang has been a source of knowledge, encouragement and friendship much needed during my trials. In particular, I have come to admire your incredible skill at clear and concise writing (a skill I sadly lack).

Special thanks to Dr. Austin Nevin, Researcher at CNR, Italy. Dr. Mikkel Christensen, Resracher at Oslo University.

I want to say special thanks to the priests of Samnoud church and Dr. Waiel Alplihy the General director of conservation in Delta-SCA.

I am very grateful to. Prof. Dr. Mohamed Latfy and Dr.Safa Abdel Kader for their helpful and enlightening remarks during the defense.

Thanks also go to colleagues at the Grand Egyptian Museum – Conservation center. specially Dr. Hussein Kamal, Mme. Omima Ali , Mr. Momen Osman, Dr. Mohamed Abdel rahman, Dr. Basem Gehad , Mr. Ahmed Adel, Mr. Noor Mohamed, Mr.Ahmed Tarek , Mr. Islam Abdel Maksoud and Mr.Mohamed Ragab.

Last but not least, a big thank you to my parents who have supported me emotionally, organisationally and financially in various ways throughout the daunting yet entertaining time I have spent with this research.

Subject	Page
Abstract	I
Keywords	II
Dedication	III
Acknowledgements	IV
List of Figures	XV-XXIII
List of Tables	XXIV-XXVI
List of Charts	VVV/II VVVV/II
METHODOLOGY	XXVII-XXXVI XXXVII-XL
THE STRUCTURE OF THE PRESENTATION	XLI
Chapter 1: Context of Research (Review of Literature)	1-18
1.1. HISTORY OF ICONS	1
1.2. TECHNOLOGY OF ICONS	1
1.3. Examination and Analyses of Icons	2-11
1.3.1. The advantages of Using FTIR in wooden Icons	2
1.3.2. NIR Research for Chemical Composition of Wood	2-4
1.3.3. The Archaemeometric study of the Paint Media	4-11
1.3.3.1 Non-invasive techniques	4
1.3.3.2. Non-destructive invasive techniques	4
1.3.3.3. Invasive Destructive Techniques	4-5
1.3.3.4.Analysis of paint media in Historical Objects	5
1.3.3.5. METHODS OF INVESTIGATION AND ANALYSES	5-8
OF ANCIENT PIGMENTS AND VARNISHES 1.3.3.6. COMPLICATIONS IN THE ANALYSIS OF PAINTING MEDIA	8

1.3.3.7. OPTICAL SPECTROSCOPY OF PAINT MEDIA AND WOOD	8-9
EXTRACTIVES	
1.3.3.7.1. Fluorescence spectroscopy	8-9
1.3.3.7.2. Fluorescence spectroscopy of wood and painting materials	9
1.3.3.7.3. Fluorescence spectroscopy of Historical paint media	9-10
1.3.3.7.4. Chemometric analysis of fluorescence spectra	10
1.3.3.7.5. Background: Raman spectroscopy of proteins	10
1.3.3.7.6. Raman spectroscopy of painting materials, wood and media	11
1.3.3.7.7. Chemometric analysis of Raman spectra	11
1.4. AGENTS AND FORMS OF	11-12
1.5. TREATMENT AND PREVENTIVE CONSERVATION	12
1.6. Previous Theses in Cairo University	13
1.7 RESULTS	18
Chapter Two: Archaeometric study on a Coptic wooden icon from the 18th Century(Applied on The Icon of The Archangel Michael at Abanoub Church, in Samanoud.)	19-85
2.1. Introduction	19
2.2. THE ICON OF THE ARCHANGEL MICHAEL	20
2.2.1 Iconographic Theme	20
2.3.DOCUMENTATION AND ASSESSMENT	22-39
2.3.1.Introduction	22
2.3.2. Photographic Documentation	23-27
2.3.3 Geometrical Documentation	28-29

2.3.4.UV Fluorescence	30-34
2.3.4.1. PROCEDURE	30
2.3.4.2. RESULTS AND DISCUSSION	34
2.3.5 Raking light imaging	35-39
2.3.5.1. PROCEDURE	35
2.3.5.2 RESULTS AND DISCUSSION	39
2.4 IDENTIFICATION OF THE WOODEN ICON MATERIALS	40-84
2.4.1.Introduction	40
2.4.2. The philosophy of sampling in art objects	41
2.4.3. Techniques	41-83
2.4.3.1. PROLOGUE	41
2.4.3.2 Fourier transform Infra red – Attenuated total reflectance (FT IR – ATR)	42-68
2.4.3.2 .1. The blue Pigment	43-45
2.4.3.2 .2. The white Pigment	46-49
2.4.3.2.3. The yellow pigment	50-52
2.4.3.2.4.The black Pigment	53-55
2.4.3.2.5.The red Pigment	56-58
2.4.3.2.6. The gold leaf	59-61
2.4.3.2.7. The wood estimation spectrum	62-65
2.4.3.3 DIFFERENTIAL SCANNING CALORIMETER METHOD (DSC)	65-68
2.4.3.3.1. Method	66
2.4.3.3 .2. Results and Discussion	68
2.4.3.4. Using SEM in estimating the historical wooden icons	69-83

2.4.3.4.1 Using SEM –EDX in study of the wooden	69-72
icon (wooden support)	72.70
2.4.3.4.2 Using SEM –EDX in study of the wooden	73-79
icon (Pigments)	90.94
2.4.3.4.3. Results and discussion	80-84
2.5. RESULTS AND DISCUSSION OF	85
ANALYSES	
Chapter 3 Experimental study	86-178
3.1. Introduction	86
Section one : (Experimental study – Study of	87-179
materials)	
3.1.1 Methodology	
J.1.1 Methodology	87
3.1.2. Egg proteins	87
881	
3.1.2.1.DEGRADATION	87-88
3.1.2.2. ARTIFICIAL AGEING AND BINDING MEDIA	89-91
3.1.2.2.1. Reasons for adopting artificial ageing of samples	89
3.1.2.2.2. Ageing of binding media	89
3.1.2.2.2.1. Thermal ageing	91
3.1.2.3. ANALYTICAL IMPLICATION OF	92
DEGRADATION OF PROTEINS BASED MEDIA	
3.1.2.3.1. Vibrational spectroscopy	
3.1.2.3.1.1. Fourier transform infra red – attenuated total reflectance (FTIR-ATR)	93-96
3.1.2.3.1.2. Raman Spectroscopy	97-102
3.1.2.3.1.3. Solution Ultra violet-Visible (UV-Vis)	103-105

	106-107
3.1.2.4. Investigation implication of protein	100 107
3.1.2.4.1. Results and Discussion	
	107
3.1.2.5. RAMAN SPECTRA OF EW AND EY RECORDED	108-111
WITH EXCITATION AT 785 NM AFTER THE BOTH	
3.1.2.5.2. Results and Discussion of Raman spectroscopy	
	111
3.1.2.6.UV-VIS SPECTROFLUORIMETRY OF AGED	112-113.
FILMS OF BINDING MEDIA	113
3.1.2.6.1. Results and discussion	113
3.1.3. samples of bound pigments	
3.1.3.1. ANALYTICAL AND EXAMINATION IMPLICATION OF	115
DEGRADATION OF PIGMENTED SAMPLES	
3.1.3.2. ARTIFICIAL AGEING REGIME	
	116
3.1.3.2.1. Thermal aging	116
3.1.3.3. Investigation implication of protein-	117-125
PIGMENTS INTERACTIONS	117-125
3.1.3.3.1. Color measurement on the Pigmented samples	117-123
3.1.3.3.1.1.Indigo	118
3.3.3.1.2.White Lead	119
3.3.3.1.3.Red Lead	120
3.3.3.1.4. Calcite	121
3.3.3.1.5. Orpiment Dark	122
3.3.3.1.6. Orpiment light	123
3.3.3.1.7. Black Lamp	124
3.1.3.3.8. Results and Discussion	125
3.1.3.4. ANALYTICAL IMPLICATION OF PROTEIN-	126-141
PIGMENTS INTERACTIONS	

04044 T	105 141
3.1.3.4.1. Fourier transform infra red – attenuated total	125-141
reflectance	
3.3.4.1.1. Indigo	126-127
3.3.4.1.2. White lead	128-129
3.3.4.1.3. Red lead	130-131
3.3.4.1.4. Calcite	132-133
3.3.4.1.5. Orpiment Dark	134-135
3.3.4.1.6. Orpiment light	136-137
1 8	
3.3.4.1.7.Black lamp	138-139
3.3.7.1.7.Diack famp	130 137
3.1.3.4.1.8. Results and Discussion of spectroscopic study of	140-141
Bound pigments samples by Vibrational spectroscopy	140-141
Common transforms infra and attenuated total actions	
3.1.4. Reference painted wood:	142
Reconstructions	
3.1.4.1. ANALYTICAL IMPLICATION OF PAINTED WOOD	143
INTERACTIONS	
3.1.4.2. ARTIFICIAL AGEING REGIME	144
3.1.4.2 .1. Thermal ageing	144
3.1.4.2 .1. Thermal agenig	1
2 1 4 2 INVECTION INDITION OF BAINTED	145-153
3.1.4.3. INVESTIGATION IMPLICATION OF PAINTED	143-133
WOOD INTERACTION	
3.1.4.3.1. Color measurement on the painted samples	145-153
combined with Light optical Microscope	
3.1.4.3.1.1. Painted wood with Indigo	146
3.4.3.1.2. Painted wood with white lead	147
5.7.5.1.2. I affice wood with white lead	147
24242 D 1 1 1 1 1 1	1.40
3.4.3.1.3. Painted wood with red lead	148
3.4.3.1.4. Painted with Calcite	149
3.4.3.1.5. Painted with Orpiment Dark	150
3.4.3.1.6. Painted with Orpiment light	151
3.4.3.1.7. Painted with Black Lamp	152
	232
3 4 3 1 8 Results and discussion	152
3.4.3.1.8. Results and discussion	153

3.1.4.4. ANALYTICAL IMPLICATION OF PAINTED WOOD INTERACTIONS	154-176
3.1.4.4.1.Fourier transform infra red – attenuated total reflectance	154-169
3.1.4.4.1.1. Painted wood with Indigo	154-155
3.4.4.1.2. Painted wood with white lead	156-157
3.4.4.1.3. Painted wood with red lead	158-159
3.4.4.1.4. Painted with Calcite	160-161
3.4.4.1.5. Painted with orpiment dark	162-163
3.4.4.1.6. Painted with orpiment dark	164-165
3.4.4.1.7. Painted with black lamp	166-167
3.1.4.4.1.8. Results and Discussion for spectroscopic study for painted wood by Vibrational spectroscopy Fourier	168-169
3.1.4.4.2. Solution Ultra violet (UV-Vis)	170-173
3.1.4.4.2.1. Ultra violet(UV-Vis) of painted layer	170-173
3.1.4.4.2.2. Results and Discussion	173
3.1.5. Assessment of chemical stability of wooden Support	174-176
3.1.5.1. X-RAY DIFFRACTION FOR THE WOOD	174-175
3.1.5.2. RESULTS AND DISCUSSION	176
3.1.6. Important Observations Obtained through	179
Section Section Two(Experimental study – Study of consolidants)	180-220
3.2.1.Introduction	180
3.2.2. Approaches to the consolidation of painted wooden object	181
3.2.3. Review of current practices for consolidation of matte paint	182
3.2.3.1. COMPARISON OF CONSOLIDATION METHODS	182
3.2.3.2. Considerations for suitable Materials	183-184
L	

3.2.3.3. CLASSIFICATION OF THE POLYMERS	184
3.2.3.3.1. Natural polymers	184
3.2.3.3.1.1. Starch / Cellulose ethers and Funori	184
3.2.3.4. MAJOR CHALLENGES ENCOUNTERED DURING CONSOLIDATION	184-185
3.2.3.5. CRITERIA FOR CONSOLIDANTS SELECTION	185
3.2.3.5.1. Parameters for consolidants	185
3.2.3.5.2. Choice of Consolidants for testing	186-188
3.2.3.6. ANALYTICAL TECHNIQUES :EXPERIMENTAL CONDITIONS AND	189
3.2.3.6.1. Thermal behavior of adhesives Differential Scanning Calorimetry (DSC)	190
3.2.3.6.1.1. Method	190
3.2. 3.6.1.2. Results	190
3.2. 3.6.2. Fourier transform infra red – attenuated total reflectance for the selected consolidants	191-196
3.2. 3.6.2.1.Klucel G	191
3.23.6.2.2.Sturogen glue	192
3.2. 3.6.2.3. Acril Ac 33	193
3.2.3.6.2.4.Funori	194
3.2.3.6.2.5.Multiphase polymer	195
3.2. 3.6.2.6. Results and Discussion	196
3.2. 3.7. ACCELERATED AGING	197
3.2. 3.7. 1. Color measurement on the polymer samples combined with Light optical Microscope	198
3.2.3.7.1.1.klucel G	199
3.2. 3.7.1.2. Sturogen Glue	200

3.2.3.7.1.4. Funori	202
3.2.3.7.1.5. Multi phase polymer (paraloid b 82 +Klucel G)	203
3.2.3.7. 1.6. Results and Discussion	203
3.2.3.8. THE EFFECT OF AGEING PROCESS ON CONSOLIDATED PAINTED WOOD.	205-219
3.2.3.8 .1.Color change	205-206
3.2.3.8.1.1. Results and discussion	207
3.2.3.8 .2. Chemical changes	207
3.2.3.8.2.1. Indigo	207
3.2.3.8 .2.2. White lead	208
3.2. 3.8.2.3.Red lead	209
3.2.3.8.2.4 .Calcite	210
3.2.3.8.2.5.orpiment light	211
3.2.3.8.2.6.orpiment dark	212
3.2.3.8.2.7. Black Lamp	213
3.2.3.8.2.8. Wood	214
3.2.3.8 .2.9. A comparison of Primal Ac33 and Klucel G behaviour	215
3.2.3.8.2.10. Observations and interpretation obtained through analyses	218-219
3.2.3.9.The most interesting Advantages and	220
LIMITATIONS POINTS OBTAINED THROUGH THIS	
SECTION	
Treatment and Conservation of a Selected Wooden Icon. (Applied on The Icon of The Archangel Michael at Abanoub Church, in Samanoud).	221-240
4.1. Introduction	221
4.2. CLEANING	221

4.3. STERILIZING THE OBJECT	223
4.3.1. Insect Infection	223
4.3.1.1. DETECTION OF INSECT INFECTION	223
4.3.2. Treatment of the infested support	223
4.4. APPLICATION OF TREATMENT OF THE	224-226
INFESTED SUPPORT	
4.4.1. Filling the insect pores	225-226
4.4.2. 4.4.2. Consolidation for the wooden support	227
4.5. REMOVING OF THE CARBONIZED AREAS	228
4.6. THE REMOVAL OF AGED VARNISH COATING	229-231
4.7. COMPLETION AND RETOUCHING OF LOST SPACES OF THE PAINT LAYER	232-236
4.8 .Results	238-239
Conclusions	240-241
Recommendations	242
Final remarks	243
References	244-264
APPENDIX A A. LIST OF ABBREVIATIONS AND	265-268
APPENDIX B INSTRUMENTAL ANALYSIS PROCEDURES	269-270
APPENDIX C ARTICLES PUBLISHED AND UNDER	271
PUBLISHING DERIVING FROM AND RELATED TO THIS APPENDIX D LIST OF SUPPLIERS	272
Arabic Keywords	II
Arabic Summery	I