

Determination of Pesticide Residues in Cotton Matrix Using LC-MS\MS and GC-MS\MS

Thesis Submitted BY

Mahmoud Hamdy Ahmed Abd El-Wahed

B.Sc. in Applied Chemistry, Faculty of Science, Ain Shams University, 2011

In the Partial Fulfillment for the Requirement for the Degree in Master of Science (M.Sc.) In Chemistry

Chemistry Department, Faculty of Science Ain Shams University

Under Supervision of

Faculty of Science, Ain Shams University

EGYPT

2017

Determination of Pesticide Residues in Cotton Matrix Using LC-MS\MS and GC-MS\MS

Thesis Submitted BY

Mahmoud Hamdy Ahmed Abd El-Wahed

B.Sc. in Applied Chemistry Faculty of Science, Ain Shams University, 2011

In the Partial Fulfillment for the Requirement for the Degree in Master of Science (M.Sc.) In Chemistry

Chemistry Department, Faculty of Science Ain Shams University

Under Supervision of **Prof. Dr. Mohamed Mahmoud Mohamed Abo-Aly**

Professor Of Inorganic and Analytical Chemistry Faculty of science, Ain Shams University

Prof. Dr. Emad Ramadan Mohamed Attallah

Chief Researcher and Quality Manager, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center (ARC)

APPROVAL SHEET

Determination of Pesticide Residues in Cotton Matrix Using LC-MS\MS and GC-MS\MS

Thesis Submitted BY

Mahmoud Hamdy Ahmed Abd El-Wahed

The thesis has been approved by:

Prof. Dr. Mohamed Mahmoud Mohamed Abo-Aly

Professor of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University

Signature:-----

Prof. Dr. Emad Ramadan Mohamed Attallah

Chief Researcher and Quality Manager, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center (ARC)

Signature:-----

Prof. Dr. Ragab Riad Amin El-Sakka

Professor of Inorganic and Analytical Chemistry, Vice Dean Faculty of Engineering, Nahda University Bani Sweif **Signature**:-----

Prof. Dr. Adel Abas Ahmed Aemara

Professor of Inorganic and Analytical Chemistry Faculty of *Education*, Ain Shams University **Signature**:-----

Prof. Dr. Ibrahim Hosseini Ali Badr

Head of Chemistry Department

Acknowledgment

Firstly thanks for my God.

I would like to express my gratitude to **Prof. Dr. Mohamed Mahmoud Mohamed Abo-Aly** Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University For his supervision, guidance, useful criticism and his efforts to fulfill this work.

I am particularly grateful to Prof. Dr. Emad Ramadan Mohamed Attallah Chief Researcher and Quality Manager, in Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food (QCAP), Agricultural Research Center (ARC) not only for supporting my desired topic but also for his continuous advice and valuable criticism during this work.

I would like to express my sincere thanks to **Dr. Moustapha N. Mohammed and Dr. Mohamed E. Amer** for taking their time to answer my questions and bearing my optimism.

I would like to express my sincere thanks to **Dr. Sherif M. Taha** for assisting in GC/MS/MS and **Dr. Osama Elsayed Hussein** for assisting in LC/MS/MS in the experimental part of this work.

I would like to thank All my colleges in the laboratory for their help and encouragement.

Last but not least I would like to give my special thanks to my beloved family for all their help and for giving me the chance to realize my dreams.

Thank you!

Mahmoud Hamdy Ahmed Abd El-Wahed

DEDICATION

I dedicate this work to my father, mother, wife, children and brothers for all the support they lovely offered during my post-graduate studies.

Abstract

Name: Mahmoud Hamdy Ahmed Abd El-Wahed

Title of the thesis: Determination of Pesticide Residues in Cotton

Matrix Using LC-MS\MS and GC-MS\MS

Position: Chemist

Degree: M.Sc., Faculty of science, Ain Shams University

Public worldwide application of pesticides in crops and environment have been increased for the past several decades. The new global concept is to care about textiles and clothes safety to improve the protection of the human health and the environment from the harmful pesticide residues. Very few articles have been published for determination of several pesticide classes in cotton fibers in one multi-residue method. A simple, efficient, sensitive, accurate and reliable multi-residue method was developed for the determination of 412 residual pesticides in cotton fibers by using modified QuEChERS method with Liquid and Gas Chromatography coupled to Triple Quadrupole Mass Spectrometer (LC-MS/MS & GC-MS/MS) for qualitative and quantitative analysis according to the international standards concepts. The developed method covered several pesticide classes, including 43 carbamates, 16 pyrethroids, 27 organochlorines (OCs), 54 organophosphorus (Ops), 31 urea derivatives, Polychlorinated biphenyl (PCBs), 6 Neonicotinoid and 228 other pesticides. Most of the target pesticides were listed in Oeko-Tex Standards, the EU Ecolabel for textile products, and the Egyptian recommendations of the Agricultural Pesticide Committee (APC-Egypt). The method optimization and validation were carried out according to the EU guidelines. The results were shown to be reliable where the corresponding average recoveries within the acceptable range of 70-120%; the relative standard deviations were less than 20%. The limit of quantitation (LOQ) of this method is 0.01 mg kg⁻¹ for all pesticides except for 3 GC-compounds and 19 LC-compounds which have LOO of 0.05 mg kg-1. the local markets in Egypt need to be monitored to evaluate the risk of these contaminants in scientific terms. Pesticide residues were determined in some cotton products that were collected from different local markets in Egypt during 2017. Among the collected cotton product samples, 14 different pesticides were detected in 20 samples in the concentration range from 0.01 to 0.416 mg kg⁻¹ for the detected pesticides. The obtained

results reflected that chlorpyrifos, malathion, profenofos and cypermethrin were the most frequently detected pesticide residues in the cotton product samples. Only one raw cotton sample has exceeded the summation of detected pesticide residues.

Keywords: Cotton; Pesticide Residues; Oeko-Tex; QuEChERS; GC-MS/MS; LC-MS/MS.

Supervisors' approval:

Prof. Dr. Mohamed Mahmoud Mohamed Abo-Aly

Professor of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University

Signature:-----

Prof. Dr. Emad Ramadan Mohamed Attallah

Chief Researcher and Quality Manager, Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center (ARC)

Signature:----

Prof. Dr. Ibrahim Hosseini Ali Badr

Head of Chemistry Department

Aim of Study

The present study aimed to introduce a sensitive and simple method for determination of 412 pesticide residues of different chemical classes in a cotton matrix using liquid and gas chromatography coupled with a tandem mass spectrometer (LC-MS\MS and GC-MS\MS) in one multi-residue method that can be used for the routine work.

Method validation and optimization were carried out according to the EU guidelines. Monitoring of pesticide residues in some cotton products such as medical cotton, raw cotton, medical gauze, cotton surgical face masks, tissues paper, and diapers that were collected from different local markets in Egypt to evaluate the risk of these products in scientific terms.

List of abbreviations

A b b m o r - ! - 4!	Companyers
Abbreviations	Synonyms
AA	Acetic Acid.
ACN	Acetonitrile.
AGA	Algae Growth Analyzer.
APC	Agricultural Pesticide Committee.
ASE	Accelerated Solvent Extraction.
BTA	Biosensor Toxicity Analyzer.
CAC	Codex Alimentarius Commission.
CAS	Chemical Abstracts Service Number.
CE	Collision Energy.
Ce	Expected concentration of the standard added to the
	bank matrix.
Cm	Centimeter.
$C_{\rm m}$	Measured concentration of the standard added to the
	blank matrix.
CXP	Collision Cell Exit Potential.
DIW	Deionized Water.
DOE	Design Of Experiments.
DP	Declustering Potential.
d-SPE	dispersive-Solid Phase Extraction.
EC	European Communities.
ECD	Electron Capture Detector.
EI	Electron Impact.
EICD	Electrolytic Conductivity Detector.
EP	Entrance Potential.
EPA	Environmental Protection Agency.
ESI	Electrospray Ionization.
EU	European Union.
Exp.	Experiment.
FAO	Food and Agriculture Organization.
FDA	Food and drug administration
GC	Gas Chromatography.
GM	Genetic Modified.
GOEIC	General Organization of Export and Import Control.
GPC	Gel permeation chromatography.
HF-LPME	Hollow Fiber Liquid-Phase Micro Extraction.
HPLC	High Performance Liquid Chromatography.
ISO	International Organization for Standardization.
IUPAC	International Union of Pure and Applied Chemistry
	nomenclature.
L	

Abbreviations	Synonyms
JECFA	Joint FAO/WHO Expert Committee on Food
	Additives.
Kg	Kilo-gram, 10^3 g.
LČ	Liquid Chromatography.
LOD	Limit of detection.
LOQ	Limit of quantification.
ME	Matrix Effect.
Mg	Milli-gram, 10^{-3} g.
mm	Millimeter
MRLs	Maximum Residue Limits.
MRM	Multiple Reaction Monitoring.
MS	Mass Spectrometry.
MS/MS	Triple Quadrupole Mass Spectrometer.
MSD	Mass Selective detector.
n	Number of replicates.
OCs	Organochlorines.
Oeko-Tex	the international association for research and testing
	in the field of textile ecology.
Ops	Organophosphorus.
PCBs	Polychlorinated Biphenyl.
PSA	Primary Secondary Amin Bonded Phase Silica.
PTFE	Polytetrafluoroethylene.
QuEChERS	"Quick, Easy, Cheap, Effective, Rugged, and Safe".
r2	The regression coefficients.
RMG	Ready-Made Garments.
rpm	Round per minute.
RSD %	Relative standard deviation.
RT	Retention Time.
SANTE	(Santé et Consommateurs), Directorate General
	Health and Consumers; European Commission.
SD	Standard deviation.
SOX	Soxhlet Extraction.
SP _e	Expected concentration of the Spiked blank sample.
SP_m	Measured concentration of the spiked blank sample.
T-Bt	Transgenic Bacillus thuringiensis.
UAE	Ultrasound Assisted Extraction.
WHO	World Health Organization.

List of Publications

- 1- Development and Validation of Multi-residue Method for Determination of 412 Pesticide Residues in Cotton Fiber Using GC-MS/MS and LC-MS/MS
- → The Journal of The Textile Institute (TJTI) in Taylor & Francis publisher
- → Print ISSN: 0040-5000 Online ISSN: 1754-2340
- **→**2017
- 2- Monitoring of Pesticide Residues in some Cotton
 Products in Egypt using GC-MS/MS and LC-MS/MS
- → Middle East Journal of Applied Sciences (MEJAS) in current research web publisher
- **→**ISSN 2077-4613
- **→**2017

Table of Contents

Approval Sheet iii Acknowledgment iv	
Acknowledgment	
Dedication v	
Abstractvi	
Aim of Study viii	
List of abbreviations ix	
List of Publications xi	
Table of contents xii	
List of tables xiv	
List of tables in supplementary materials xvi	
List of figures xvi	
Chapter 1 Introduction	
1.1. Cotton History	
1.2. Chemical and Physical Composition of Cotton 1	
1.3. Types of Cotton 2	
1.4. Importance of Cotton Crop	
1.5. Cotton Crop and Pesticides	
1.6. Cotton Pesticides and Side Effects	
1.7. Dermal absorption of pesticides	
1.8. Maximum Residues Limits for pesticides in Cotton fiber 10	
1.9. Literatures Review	
1.9.1.Methods of Analysis	
Chapter 2 Experimental work	
2.1. Materials	
2.1.1. Pesticides Reference Standards and Stock solutions 17	
2.1.1.2. Intermediate mixture soultuion	
2.1.1.3. Spiking mixture solution	
2.1.1.4. Calibration mixture solution	
2.1.1.5. Injection standard solution 17	
2.1.2. Reagents and Chemicals 18	
2.1.3. The QuEChERS Kits	
2.1.4. Apparatus	
2.2. Methodology	
2.2.1. Scope of the Method	

Content		Page	
2.2.2.	Test Sample	20	
2.2.3.	Sample pre-treatment and Homogenization	20	
2.2.4.	Sample extraction and cleanup procedure	21	
2.3.	Instrumentation	23	
2.3.1.	LC-MS/MS system	23	
2.3.2.	GC-MS/MS system	24	
	Chapter 3 Results and Discussion		
3.1.	Optimization of the extractability	26	
3.1.1.	Sample / Solvent ratio or Sample Weight	28	
3.1.2.	Sample Pre-treatment and Homogenization	29	
3.1.3.	Hydrolysis by Deionized Water (DIW)	30	
3.1.4.	Hydrolysis by 1% Acetic Acid (AA)	31	
3.1.5.	Ultra-Turrax Blending	32	
3.1.6.	Extract Evaporation and Concentration	33	
3.1.7.	Sonication Time	34	
3.2.	Method Validation	36	
3.2.1.	Matrix Effect	37	
3.2.2.	Recovery and Precision	39	
3.2.3.	Limit of quantification (LOQ)	60	
3.2.4.	Linearity	61	
3.2.5.	Repeatability	61	
3.3.	Internal Quality Control (IQC)	62	
3.4.	Monitoring of pesticide residues in Egypt	62	
Conclusion			
Summary			
References			
Supplementary Materials			
Arabic Summery			
Arabic Abstract			

List of Tables

Table Title	Page
Table 1: The LC Gradient Elution program	24
Table 2: The GC oven programming temperature	25
Table 3: Screening the factors affected the extraction procedure in the homogenized cotton sample	27
Table 4: The five pesticides and their formula, CAS No., chemical class and PKOW that were detected during the extraction method optimization.	28
Table 5: The average concentrations in experiments (1,2) of the five pesticides in the three replicates (n=3) of the same incurred real contaminated cotton sample in case of (Exp-1) non-homogenized cotton and (Exp-2) homogenized cotton	29
Table 1: The average concentrations in experiments (2-4) of the five pesticides in the three replicates (n=3) of the same homogenized incurred real contaminated cotton sample in case of (Exp-2) using 10 ml Deionized Water, (Exp-3) using 15 ml Deionized Water and (Exp-4) using 10 ml of 1% Acetic Acid	31
Table 7: The average concentrations in experiments (5,6) of the five pesticides in the three replicates (n=3) of the same homogenized incurred real contaminated cotton sample in case of (Exp-5) without Ultra-Turrax blending and (Exp-6) without Ultra-Turrax & Sonication	33
Table 8: The average concentrations in experiments (7,8) of the five pesticides in the three replicates (n=3) of the same homogenized incurred real contaminated cotton sample in case of (Exp-7) decreasing the dilution factor by extract concentration by evaporation and (Exp-8) without making sonication.	34

Table Title	Page	
Table 9: The average concentrations in experiments (9-11) of		
the five pesticides in the three replicates (n=3) of the same		
homogenized incurred real contaminated cotton sample in		
case of (Exp-9) sonication by 5 minutes, (Exp-10) sonication		
by 10 minutes, and (Exp-11) sonication by 15 minutes	35	
Table 10: The optimum conditions in the extraction method of pesticide residues in cotton Analysis	35	
Table 11: Compilation of average pesticide recovery results in		
LC-MS/MS and GC-MS spiked at 0.01, 0.05, and 0.1 mg kg-		
1 (6 replicates, one analyst, at each level) in the cotton		
matrix	40	
matrix		
Table 12: Types and number of the collected samples from local markets in Egypt		
Table 13: The results of concentrations of detected pesticides in raw cotton samples		
Table 14: The results of concentrations of detected pesticides in medical cotton product samples.	64	
Table 15: The spiking recovery % for detected pesticide residues by GC-MS/MS.	66	
Table 16: The spiking recovery % for detected pesticide residues by LC-MS/MS.	60	