DETECTION OF MILK AND SOME DAIRY PRODUCTS ADULTERATION

By

YUSUF MOHAMED ABD ELGHANY ELAASER

B.Sc. Agri. Sci. (Dairy Science), Cairo University, 2011

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Science (Dairy Science)

Department of Dairy Science
Faculty of Agriculture
Cairo University
EGYPT

SUPERVISION SHEET

DETECTION OF MILK AND SOME DAIRY PRODUCTS ADULTERATION

M.Sc. Thesis
In
Agri. Sci. (Dairy Science)

 $\mathbf{B}\mathbf{y}$

YUSUF MOHAMED ABD ELGHANY ELAASER

B.Sc. Agric. Sci. (Dairy Science), Cairo University, 2011

SUPERVISION COMMITTEE

Dr. EBTISAM IBRAHIM GHITA

Professor of Dairy Science, Fac. Agri., Cairo University

Dr. MOHAMED NAGEIB ALI HASSAN

Professor of Dairy Science, Fac. Agri., Cairo University

Dr. ESAAM MOHAMED MOHAMED HAMAD

Assistant Professor of Dairy Science, Fac. Agri., Cairo University

Name of Candidate: Yusuf Mohamed A. Elaaser Degree: M.Sc.

Title of Thesis: Detection of Milk and Some Dairy Products Adulteration

Supervisors: Dr. Ebtisam Ibrahim Ghita

Dr. Mohamed Nageib Ali Hassan

Dr. Esaam Mohamed Mohamed Hamad

Department: Dairy science

Branch: - **Approval:** 25/ 5 /2017

ABSTRACT

Adulteration may be unintentional or intentional to increase the margin of profit. Sometimes the regulations or the standard specifications of the country help those adulterators by indirect ways which lead to the appearance of adulterated and low nutritional value dairy products in the market protected by these regulations or standard specifications. In this study, a survey has been done on some available cheese especially white soft cheese and processed cheese in the local market of Egypt. Also it was interest to find which method can be used to detect milk fat adulteration with vegetable oils.

Fifty six samples of some white soft cheese (34 samples) and processed cheese (22 sample) were collected from the local market and were analyzed for chemical composition (fat, protein, total solids) and starch presence. The obtained data revealed that most samples recorded very low protein content and high fat percentage. Besides, presence of starch in one brand of white soft cheese and in most samples of processed cheese. Allowance of low protein percentage in white soft and processed cheeses, as well as the high fat percentage and the expense of protein, the use of starch to increase the total solids and also the use of hydrogenated vegetable oil and fats is an inevitable consequence of the loose clauses in the Egyptian standardization specification.

On the other hand samples of standard butters (prepared from milk obtained from the herd of faculty of agriculture Cairo university), butter collected from the local market, vegetable oil and margarine were subjected to different analytical to find out the best methods that could be used to detect milk fat adulteration. Melting profile appearance and Liberman-Bruchared for cholesterol detection gave primary results stating the probability of adulteration. While Reichert-Meissl number gave positive result for detecting adulteration but can't deny its presence. To determine adulteration presence or absence, determination of sterols content has done been along which the determination of fatty acids composition.

Therefore it could be recommended reviewing the Egyptian standard specifications and some clauses should be changed to achieve minimal nutritional and healthy value requested in the dairy products. Also when determining milk fat adulteration we recommend melting profile appearance as a primary step, then determination of Reichart-Meissl number and if there is a probability for adulteration the sterol and fatty acids content should be done.

Key words: adulteration, white soft cheese, processed cheese, sterols, fatty acids

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my Family, parents, brothers and sisters for all the support they lovely offered along my life and to my wife and son for their patience and help during the period of my post-graduation.

ACKNOWLEDGEMENT

First I am deeply thankful To Allah for his providence and help, to grace of whom present work was realized.

I wish to express my sincere thanks, deepest gratitude and appreciation to Dr. Ebtisam Ibrahim Ghita and Dr. Mohamed Nageib Ali Hassan Professors of Dairy Science, Faculty of Agriculture, Cairo University for suggesting the problem, supervision, continued assistance and their guidance through the course of study and revision the manuscript of this thesis. Sincere thanks to Dr. Esaam Hamad and Dr. Mahmoud Abdel-Hamid assistant Professors of Dairy Science, Faculty of Agriculture, Cairo University for sharing in knowledge.

Deep thanks were according to the director and staff of Food Safety and Quality Control laboratory for thier help. Grateful appreciation is also extended to all staff members of Dairy Science Department, Faculty of Agriculture, Cairo University.

CONTENTS

	P
INTRODUCTION	
REVIEW OF LITERATURE	
1. Food adulteration	
2. Milk as nutritional food	
3. Milk adulteration	
4. The standard specification and adulteration	
5. Milk fat properties	
6. Common vegetable oils used in dairy manufacture	
7. Effect of milk fat adulteration on its properties	
8. Methods of milk adulteration detection	
MATERIALS AND METHODS	
1. Materials	
2. Methods of analysis	
RESULTS AND DISCUSSION	
a. White soft cheese varieties	•
b. Processed cheese varieties	
2. Detection of butter adulteration by vegetable oils	
a. The qualitative methods	
1. Melting profile appearance	
2. Liberman-Bruchared color reaction for cholesterol detection	
b. The physical and chromatographic methods	
1. Reichert-Meissl number	
2. Sterol determination by HPLC	
3. Fatty acids composition by GC	
c. Detection of milk fat adulteration in milk samples from	
the local market	

LIST OF TABLES

No.	Title	Page
1.	The common adulterants that use in milk and milk products adulteration.	8
2.	Fatty acids composition of milk and some edible oils	13
3.	Fatty acids composition of milk fat with different ratios of Corn oil	24
4.	Butter from the local market	31
5.	BO and HPKO mixtures	32
6.	Chemical composition of some white soft cheese varieties available in the local market	39
7.	Mean squares of the analysis of variance for protein content in white soft cheese available in the local market.	40
8.	Chemical composition of some processed cheese varieties available in the local market	42
9.	Mean squares of the analysis of variance for protein content in processed cheese available in the local market.	43
10.	Butter, Margarine and vegetable oils from the local market.	45
11.	Values of Richert-Meissl for BO, SHO, HPKO and BO/HPKO mixtures	53
12.	Sterol fractions in BO, HPKO and their mixtures	54
13.	Fatty acids composition in BO, PO, SHO, PKO and HPKO	58

14.	Fatty acids composition of BO as affected by the addition of HPKO at different levels	60
15.	Rate of change (%) in SFA, MUSFA and PUSFA in BO as affected with the addition of HPKO in different ratios.	63
16.	Chemical composition of buffalo's milk samples collected from the local market	64
17.	Values of Richert-Meissl for doubtful buffalo's milk fat collected from local markets compared with BO	65
18.	Sterols fraction in doubtful buffalo's milk fat collected from local markets compared with BO	66
19.	Fatty acids composition in doubtful buffalo's milk fat collected from local markets compared with BO, HPKO and SHO.	67