Association between Fatty Liver Disease and Hyperinsulinemia

Thesis

Submitted for the partial fulfillment of Master Degree in Internal Medicine

By

Suzan Mahmoud I brahim M.B., B.CH. AinShamsUniversity

Under Supervision of

Prof. Dr. Hanan Mahmoud Badawy

Professor of Internal Medicine Faculty of Medicine – AinShamsUniversity

Prof. Dr. Amal Shawky Bakir

Professor of Internal Medicine Faculty of Medicine – AinShamsUniversity

Dr. Marcel William Keddeas

Assistant Professor of Internal Medicine Faculty of Medicine – AinShamsUniversity

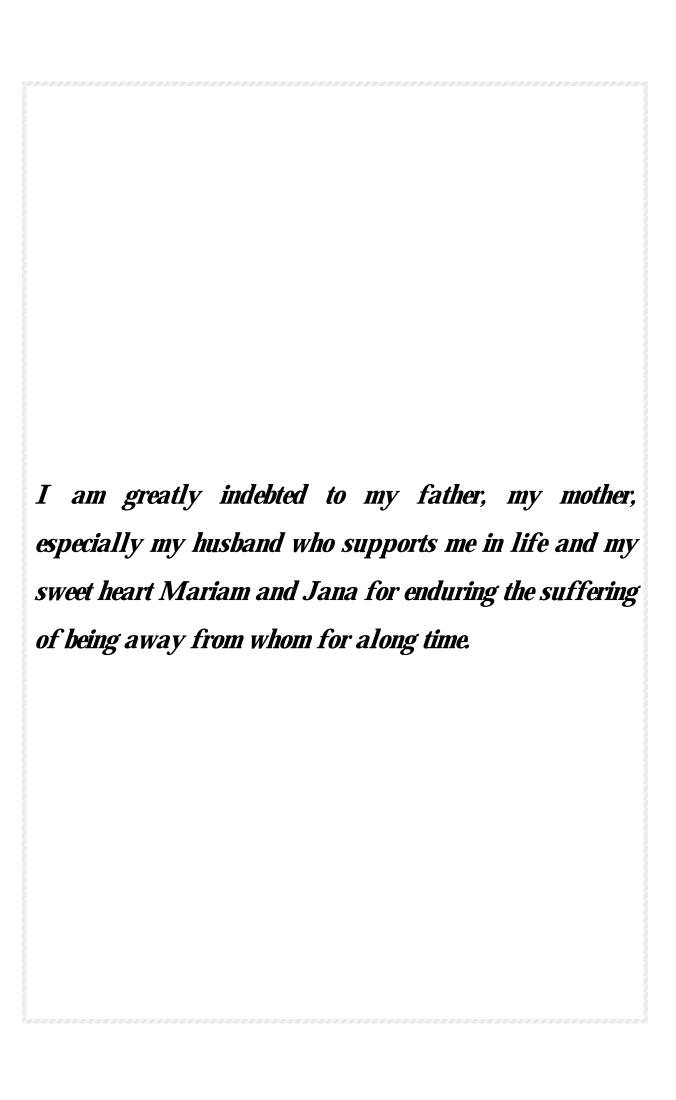
> Faculty of Medicine AinShamsUniversity 2014

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

"وَمَا أُوتِيتُم مِّنَ الْعِلْمِ إِلَّا هَلِيلًا"

حدَقَ الله العَظِيم

Acknowledgement


First of all, praise and thanks to Allah, the creator and sustainer of the world, I kneel to express my gratitude for all the countless gifts I have been offered.

I would like to express my deepest gratitude to **Prof. Dr. Hanan Mahmoud Badawy**, Professor of Internal Medicine, Ain Shams University for her encouragement, and unlimited support. I am extremely grateful to her for his generous advice and for her guidance and assistance throughout the whole work. I owe her great deal of refining & revising this work through the long time & patience he offered me.

Special thanks to **Prof. Dr. Amal Shawky Bakir,** Professor of Internal Medicine, Ain Shams University for her kind guidance, valuable instructions, generous help, his sincere efforts and fruitful encouragement and unlimited support.

I would deeply like to tharnk Assist. Prof. Dr. Marcel William Keddeas, Assistant Professor of Internal Medicine, Ain Shams University for her help, for her meticulous supervision, support and her simplicity in handling matters.

Suzan Mahmoud

Contents

Introduction and aim of work	1-3
Review of literatures:	4- 53
Chapter I: Fatty liver	4- 25
Chapter II: Insulin resistance	26-53
Patients and Methods	54-60
Results	61-88
Discussion	89-98
Summary	99-102
Conclusion	. 103
Recommendations	104
References	105-131
Arabic summary	3-1

List of Abbreviations

AACE	American college of endocrinology
ACEI	Angiotensin-converting enzyme inhibitors
ALD	Alcoholic liver disease
ALT	Alanine Aminotransferase
AMA	Antimitochondrial Antibody
ANA	Antinuclear Antibody
ARBs	Angiotensin-receptor blockers
AST	Aspartate Aminotransferase
ATP	Adenosine triphosphate
BMI	Body mass index
Ca2+	Calcium
C AMP	Cyclic adenosine monophosphate
CK 18	Cytokeratin 18
C-peptide	Connecting peptide
CT	Computed Tomography
CVD	cardiovascular disease
DAG	Diacylglycerol
DM	Diabetes mellitus
DNL	De novo lipogenesis
FFA	Free fatty acid
FSIVGTT	Frequently sampled intravenous glucose tolerance test
g/dL	gram/deciliter
g/L	gram/liter
G6P	Glucose 6 Phosphate
GIP	Gastric inhibitory polypeptide

GGT	Gamma Glutamyltransferase
GLUT-1	Glucose transporter 1
GLP-1	Glucagon-like peptide-1
HbA1c	Hemoglobin A1c
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HDL	High Density Lipoprotein
HMG-CoA	3-Hydroxy-3-Methylglutaryl-coenzyme A
HOMA-IR	Homeostatic model assessment of Insulin resistance
IAPP	Islet cell amyloid polypeptide
IDF	International Dairy Federation
IGFBP-1	Insulin-like growth factor-binding protein 1
IL-6	Interleukin-6
IM	Intestinal microbiota
IP-3-kinase	Inositol 1,4,5-trisphosphate 3-kinases
IR	Insulin Resistance
IRS-1	Insulin receptor substrate 1
K	Potassium
kPa	Kilopascals
LDL	Low Density Lipoprotein
LFTs	Liver function tests
LSM	liver stiffness measurement
MetS	Metabolic Syndrome
mmol/l	millimoles/liter
mu/ml	milliunits/ milliliter
NAFLD	Non-alcoholic fatty liver disease
NAS	NAFLD Activity Score
NASH	Non-alcoholic steatohepatitis

NCEP	National Cholesterol Education Program Adult Treatment
ATP III	Panel III
NEFA	Non-esterified fatty acids
NF-κB	Nuclear Fasctor kappa -light-chain-enhancer of activated
	B cells
ng/mL	nanogram/milliliter
NPY	Neuropeptide Y
PACAP	Pituitary Adenylate Cyclase-Activating Polypeptide
PCOS	polycystic ovary syndrome
PI	phosphatidylinositol
РКСє	protein kinase Cε
PO4	Phosphate
PPAR-G	peroxisome proliferator-activated receptor gamma
RAAS	Renin-angiotensin-aldosterone system
RER	Rough endoplasmic reticulum
SREBP1c	Sterol Regulatory Element Binding Protein 1c
TGF-β	Transforming growth factor β
TNF-α	Tumor necrosis factor alpha
Trp	Tryptophan
UDCA	Ursodeoxycholic Acid
UPS	Ubiquitin proteasome system
U/S	Ultrasonography
VIP	vasoactive intestinal peptide
VLDL	Very low density lipoprotein
Wk	Week

List of Tables

Table No.	Item	Page
Table (1):	classification of severity of fatty liver in ultrasound	18
Table (2):	Diagnostic criteria of metabolic syndrome	39
Table (3):	Demographic data of all studied patients	63
Table (4):	Comparison between both groups regarding some demographic and laboratory values	65
Table (5):	Correlation between HOMA IR and other demographic and laboratory data in both groups.	66
Table (6):	Correlation between C-peptide and other descriptive data in both groups	70
Table (7):	Comparison between Dyslipidemic and non- dyslipidemic patients regarding all of the following: BMI, waist circumference, sum of skin folds, C- peptide and HOMA IR in group one	75
Table (8):	Comparison between Dyslipidemic and non- dyslipidemic patients regarding all of the following: BMI, waist circumference, sum of skin folds, C- peptide and HOMA IR in group two	76
Table (9):	Correlation between BMI and other descriptive data in both group	77
Table (10):	Correlation between waist circumference and other descriptive data in both groups	80
Table (11):	Correlation between sum of skin folds and other demographic data in both groups	82

List of Figures

Figure	Item	
No.		Page
Figure (1):	Diagnosis and staging of non-alcoholic fatty liver	11
	disease	
Figure (2):	US of fatty liver	19
Figure (3):	Schematic presentation of insulin secretory pathways	34
Figure (4):	Demographic data of all studied patients	63
Figure (5):	Correlation between HOMA IR and BMI in group	67
	one	
Figure (6):	Correlation between HOMA IR and BMI in group two	67
Figure (7):	Correlation between HOMA IR and body fat in group one	68
Figure (8):	Correlation between HOMA IR and AST in group two	68
Figure (9):	Correlation between C-peptide and VLDL in group one	70
Figure (10):	Correlation between C-peptide and VLDL in group two	71
Figure (11):	Correlation between C-peptide and body fat in group one	71
Figure (12):	Correlation between C-peptide and body fat in group two	72
Figure (13):	Correlation between C-peptide and AST in group one	72
Figure (14):	Correlation between C-peptide and AST in group two	73
Figure (15):	Correlation between C-peptide and fasting insulin in	73
	group one	

Figure (16):	Correlation between C-peptide and fasting glucose in	74
	group two	
Figure (17):	Comparison between Dyslipidemic and non- dyslipidemic patients regarding all of the following: BMI, waist circumference, sum of skin folds, C- peptide and HOMA IR in group one	75
Figure (18):	Comparison between Dyslipidemic and non-dyslipidemic patients regarding all of the following: BMI, waist circumference, sum of skin folds, C-peptide and HOMA IR in group two	76
Figure (19):	Correlation between BMI and fasting insulin in group one	78
Figure (20):	Correlation between BMI and fasting insulin in group two	78
Figure (21):	Correlation between BMI and fasting glucose in group one	79
Figure (22):	Correlation between BMI and fasting glucose in group two	79
Figure (23):	Correlation between waist circumference and HDL in group one	81
Figure (24):	Correlation between sum of skin folds and BMI in group one	83
Figure (25):	Correlation between sum of skin folds and BMI in group two	83
Figure (26):	Correlation between sum of skin folds and fasting	84

	glucose in group one	
Figure (27):	Correlation between sum of skin folds and fasting glucose in group two	84
Figure (28):	Correlation between sum of skin folds and fasting insulin in group one	85
Figure (29):	Correlation between sum of skin folds and fasting insulin in group two	85
Figure (30):	Correlation between sum of skin folds and LDL in group one	86
Figure (31):	Correlation between sum of skin folds and LDL in group two	86
Figure (32):	Correlation between sum of skin folds and cholesterol in group one	87
Figure (33):	Correlation between sum of skin folds and cholesterol in group two	87
Figure (34):	Correlation between sum of skin folds and AST in group one	88

Introduction

The liver is the primary site of insulin clearance. The majority (80%) of endogenously secreted insulin is cleared by the liver, 15% by the kidney, and 5% by muscle (*Kotronen et al.*, 2007a).

In advanced liver disease, insulin clearance is decreased, which is considered to be one of the main causes of hyperinsulinemia in liver cirrhosis (*Kotronen et al.*, 2007b).

Fatty Liver Disease is associated with impaired insulin action to suppress hepatic glucose production when measured directly in both nondiabetic subjects (*Seppala-Lindroos et al.*, 2002) and type 2 diabetic patients (*Ryysy et al.*, 2000) & Fatty Liver Disease is closely correlated with fasting serum insulin concentrations but the extent to which impaired insulin clearance due to hepatic fat accumulation contributes to hyperinsulinemia has not previously been determined (*Westerbacka et al.*, 2004).

Previous studies have shown that insulin clearance is decreased in obesity. It has also been suggested that intra-abdominal rather than subcutaneous fat influences splanchnic insulin clearance (*Chan et al.*, 2006).

Insulin resistance (IR) is the principal indication for development of metabolic syndrome and type 2 diabetes (*Grundy*, 2008 and Eckel et al., 2010). It appears as a consequence of the inability of insulin to induce the appropriate effect on glucose metabolism. Inordinately large

Introduction and Aim of The Work

amounts of insulin are required to achieve a normal response in a state of IR. A hyperinsulinemic state causes several clinical abnormalities to appear in the blood vessels, kidneys, and liver, and these represent the major features of metabolic syndrome (*Lorenzo et al.*, 2003).

Metabolic syndrome generally refers to a combination of metabolic diseases such as abdominal obesity, high blood pressure, dyslipidemia and elevated blood glucose, that appear together in an individual patient (*Eckel et al.*, 2010).

Because metabolic syndrome is recognized as a serious risk factor for cardiovascular disease, prevention and comprehensive management are important in treating this condition (*Isomaa et al.*, 2001).

Introduction and Aim of The Work

Aim of the Work

The aim of this work is to study the relationship between fatty liver disease and insulin resistance.