

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

"ANALYTICAL STUDY ON SOME ANTI-INFLAMMATORY DRUGS"

Thesis presented by
Nour EL-Deen Wageih Sayed

B.Pharm.Sci. Cairo University

(1996)

M.Sc. Pharm. Sci. Cairo University (2001)

For Fulfillment of the degree of Philosophy doctor In Pharmaceutical Sciences

"Analytical Chemistry"

Under the supervision of

Prof.Dr. Badr E.Elzeany Professor of Analytical Chemistry Faculty of Pharmacy

Cairo University

Prof.Dr. Mohamed A.Elkawy

Professor of Analytical Chemistry Faculty of Pharmacy Cairo University

Dr. Nagiba Y. Hasan

Lecturer of Analytical Chemistry Faculty of Pharmacy Cairo University

APPROVAL SHEET

This thesis has been approved on / / 2005 by the committee in charge.

Prof.Dr. Badr E.El-Zeany

Head of Analytical Chemistry Department Faculty of Pharmacy Cairo University Badibreay

Prof.Dr. Mohamed A.El-kawy

Professor of Analytical Chemistry Faculty of Pharmacy

Cairo University

Prof.Dr. Abdelkader Sayed Ahmad

Professor of Analytical Chemistry

Faculty of Pharmacy

Cairo University

Prof.Dr. Hamed Mahmoud El-fatatry

Professor of Analytical Chemistry

Faculty of Pharmacy

Tanta University

ENT

LIST OF CONTENTS

PREFACE	I
PART I: GENERAL INTRODUCTION	
I.1. Anti-inflammatory drugs	3
I.1.1. Historical	3
I.1.2. Definition and classification of anti-inflammatory drugs	5
I.2. Stability indicating methods	7
1.2.1.Concepts in drug stability	7
1.2.2.Stability indicating methods of analysis	7
DADT II. CTADII ITV INDICATING ACTIVISTS	
PART II: STABILITY INDICATING METHODS FOR THE DETERMINATION OF ACECLOFENAC	
II.1.0 LITERATURE REVIEW	13
II.1.1 STRUCTURE	13
II.1.2 PROPERTIES	13
II.1.3 PHARMACOLOGY	13 13
II.1.4 METHODS OF ANALYSIS	14
II.2.0 EXPERIMENTAL STUDY	14
II.2.1.0.Samples, reagents and apparatus	16
II.2.2.0. Procedures	17
II.3.0.RESULTS AND DISCUSSION	22
II.3.1.Degradation of aceclofenac	22
II.3.2.Chemometric methods	22
II.3.3.Bivariate calibration method	33
II.3.4. Statistical analysis	37
PART III: STABILITY INDICATING METHODS FOR	
THE DETERMINATION OF LORNOXICAM	42
III.1.0 LITERATURE REVIEW	42
III.1.1 STRUCTURE	42
II.1.2 PROPERTIES	42
TI 1 4 3 APPRIADA AN ANTANA	42
	42
II.2.0 EXPERIMENTAL STUDY	11

111.2.1.0.Samples, reagents and apparatus	44
III.2.2.0. Procedures	47
III.3.0. RESULTS AND DISCUSSION	53
III.3.1.Degradation of lornoxicam	5 3
III.3.2.Zero order spectrophotometric method	57
III.3.3. Densitometric method	64
III.3.4. HPLC method	71
III.3.5. Statistical analysis	78
PART IV: STABILITY INDICATING METHODS FOR	
THE DETERMINATION OF PIROXICAM	80
IV.1.0 LITERATURE REVIEW	80
IV.1.1 STRUCTURE	80
IV.1.2 PROPERTIES	80
IV.1.3 PHARMACOLOGY	80
IV.1.4 METHODS OF ANALYSIS	81
IV.2.0 EXPERIMENTAL STUDY	88
IV.2.1.0.Samples, reagents and apparatus	88
IV.2.2.0. Procedures	92
IV.3.0. RESULTS AND DISCUSSION	100
IV.3.1.Degradation of piroxicam	100
IV.3.2.First(D ₁)derivative spectrophotometric method	104
IV.3.3.Ratio-spectra first derivative (RSD ₁)	
spectrophotometric method	108
IV.3.4.chemometric methods	115
IV.3.5. Densitometric method	130
IV.3.6. HPLC method	130
IV.3.7. Statistical analysis	144
APPENDIX	146
REFERENCES	152

LIST OF FIGURES

Figure (1): Zero-order spectra of the ethanolic solutions of intact acecl-	
ofenae (30 μg. ml ⁻¹) and its degradate (5μg. ml ⁻¹).	23
Figure (2): RMSEC plot of the cross validation results of the	
training set as a function of the number of principle	
components used to construct the PCR calibration for	
aceclofenac.	26
Figure (3): RMSEC plot of the cross validation results of the	
training set as a function of the number of principle	
components used to construct the PLS calibration for	
aceclotenac.	26
Figure (4): Predicted concentration versus actual concentration of	
aceclofenac in the validation set using CLS method.	29
Figure (5): Predicted concentration versus actual concentration of	
aceclofenae in the validation set using PCR method.	29
Figure (6): Predicted concentration versus actual concentration of	
aceclofenac in the validation set using PLS method.	30
Figure (7): concentration residuals versus actual concentration of	
aceclofenac in the validation set using CLS method.	30
Figure (8): concentration residuals versus actual concentration of	
aceclofenac in the validation set using PCR method.	31
Figure (9): concentration residuals versus actual concentration of	
aceclofenac in the validation set using PLS method.	31
Figure (10): The proposed pathway of lornoxicam degradation.	54
Figure (11): Thin layer chromatogram of lornoxicam and its	
degradates using chloroform: methanol (95:5 v/v) as	
mobile phase.	55
Figure (12): IR spectra of lornoxicam and its degradates.	56

Figure (13): Zero-order spectra of Intact lornoxicam (5 μg. ml ⁻¹) and	
its degradates (5 μg. ml ⁻¹).	58
Figure (14): Linearity of the peak amplitudes at 380 nm to the	
concentration of intact lornoxicam.	59
Figure (15): Scanning profile of a TLC chromatogram of lornoxicam.	65
Figure (16):Linearity of the peak area to the concentration of pure	
lornoxicam.	66
Figure (17): HPLC chromatograms of lornoxicam(5µg. ml ⁻¹) and its	
degradates (5μg. ml ⁻¹).	72
Figure (18): Linearity of the peak area to the concentration of pure	
lomoxicam.	73
Figure (19): The proposed pathway of piroxicam degradation.	101
Figure (20): Thin layer chromatogram of piroxicam and its degradation	
products using chloroform: methanol (95:5 v/v) as mobile	
phase.	102
Figure (21): IR spectra of piroxicam and its degradates.	103
Figure (22): Zero-order spectra of the ethanolic solutions of	
piroxicam (12 μg. ml ⁻¹) and its degradates (5 μg. ml ⁻¹).	105
Figure (23): First derivative spectra of the ethanolic solutions of Intact	
piroxicam (12 μg. ml ⁻¹) and its degradates (5μg. ml ⁻¹).	106
Figure (24): Linearity of the peak amplitudes at 345 nm to the	
concentration of intact piroxicam.	107
Figure (25): Ratio-spectra & first derivative curves of the ethanolic	
solutions of Intact piroxicam (12 μg. ml ⁻¹) and its degradates	
(10μg.ml ⁻¹) using 10μg.ml ⁻¹ of the first degradate as the	
divisor.	113
Figure (26): Linearity of the peak amplitudes at 358 nm to the	
concentration of intact piroxicam	114

Figure (27): RMSEC plot of the cross validation results of the	
training set as a function of the number of principle	
components used to construct the PCR calibration for	
piroxicam.	122
Figure (28): RMSEC plot of the cross validation results of the	
training set as a function of the number of principle	
components used to construct the PLS calibration for	
piroxicam.	-122
Figure (29): Predicted concentration versus actual concentration of	
piroxicam in the validation set using CLS method.	124
Figure (30): Predicted concentration versus actual concentration of	
piroxicam in the validation set using PCR method.	124
Figure (31): Predicted concentration versus actual concentration of	
piroxicam in the validation set using PLS method.	125
Figure (32): concentration residuals versus actual concentration of	
piroxicam in the validation set using CLS method.	125
Figure (33): concentration residuals versus actual concentration of	
piroxicam in the validation set using PCR method.	126
Figure (34): concentration residuals versus actual concentration of	
piroxicam in the validation set using PLS method.	126
Figure (35): Scanning profile of a TLC chromatogram of piroxicam. Figure (36): Linearity of the peak area to the concentration of pure	131
piroxicam.	132
Figure (37): HPLC chromatograms of piroxicam(5µg. ml ⁻¹) and its	
degradates (5μg. ml ⁻¹).	138
Figure (38): Linearity of the peak area to the concentration of pure	
piroxicam.	139

LIST OF TABLES

Table (1): The concentration of different mixtures of aceclofenac	
and its degradate used in the training set.	24
Table (2): Results of the analysis of the mixtures of the validation	
set of aceclofenac by the proposed method.	27
Table (3): RMSEP and Q ² values of the validation set analysis of	
aceclofenac by the proposed methods.	32
Table (4): Determination of aceclofenac in Bristaflam tablets by the	
proposed chemometric methods compared with the official	
B.P. (1998) method.	34
Table (5): Application of standard addition technique to the analysis	
of aceclofenae by the proposed chemometric methods.	35
Table (6): Application of the method of Kaiser for the selection of	
the wavelength set for the mixture aceclofenac (AC)-	
degradate (DC): the absolute values of determinants of	
sensitivity matrices (K x 10^{-6}).	36
Table (7): Linear regression calibration formulae used for the	
bivariate algorithm.	38
Table (8): Determination of aceclofenac in laboratory prepared	
mixtures by the proposed bivariate method.	38
Table (9): Determination of aceclofenac in Bristaflam tablets by the	
proposed bivariate spectrophotometric method compared	
with the official B.P. (1998) method.	39
Table (10): Application of the standard addition technique to the	
analysis of aceclofenac by the proposed bivariate	
spectrophotometric method.	40
Table (11): Statistical analysis of the results obtained by the	
proposed methods and B.P.(1998) method for the	
determination of aceclofenac.	41

Table (12): Accuracy of the proposed zero order spectrophotometric	
method for the analysis of pure samples of lomoxicam.	60
Table(13): Determination of lornoxicam in laboratory prepared	
mixtures with its degradates by the proposed zero order	
spectrophotometric method.	61
Table (14): Determination of lomoxicam in pharmaceutical formula-	
tions by the proposed zero order spectrophotometric	
method.	62
Table (15): Application of the standard addition technique to the	
analysis of lornoxicam by zero order spectrophotometric	
method.	63
Table (16): Accuracy of the proposed densitometric method for	
the analysis of pure samples of lomoxicam.	67
Table(17): Determination of lornoxicam in laboratory prepared	
mixtures with its degradate by the proposed densitomet-	
ric method.	68
Table (18): Determination of lornoxicam in pharmaceutical formula-	
tions by the proposed densitometric method compared	
with the reference method.	69
Table (19): Application of standard addition technique to the	
analysis of lornoxicam by densitometric method.	70
Table (20): Accuracy of the proposed HPLC method for the	
analysis of pure samples of lornoxicam.	74
Table (21): Determination of lornoxicam in laboratory prepared	
mixtures with its degradate by the proposed HPLC	
method.	75
Table (22):Determination of lornoxicam in pharmaceutical formula-	
tions by the proposed HPLC method compared with the	
reference method.	76

Table (23): Application of standard addition technique to the analysis	
of lornoxicam by HPLC method.	77
Table (24): Statistical analysis of the results obtained by the	
proposed methods and the reference method for the	
determination of lornoxicam.	79
Table (25): Accuracy of the proposed D ₁ spectrophotometric method	
for the analysis of pure samples of piroxicam.	109
Table (26): Determination of piroxicam in laboratory prepared mixt-	
ures with its degradates by the proposed first derivative	
spectrophotometric method.	110
Table (27): Determination of piroxicam in pharmaceutical formula-	
tions by the proposed first derivative spectrophotometric	
method compared with the reference method.	111
Table (28): Application of the standard addition technique to the	
analysis of piroxicam by first derivative spectrophoto-	
metric method.	112
Table (29): Accuracy of the proposed RSD ₁ spectrophotometric	
method for the analysis of pure samples of piroxicam.	116
Table (30):Determination of piroxicam in laboratory prepared mi-	
xtures with its degradates by the proposed RSD ₁ spectr-	
ophotometric method.	117
Table (31): Determination of piroxicam in pharmaceutical formula-	
tions by the proposed RSD _I spectrophotometric method	
compared with the reference method.	118
Table (32): Application of standard addition technique to the	
analysis of piroxicam by RSD ₁ spectrophotometric	
method.	119
Table (33): The concentration of different mixtures of piroxicam and	
its degradates used in the training set.	120