SEASONAL VARIATION OF VOLATILE POLY AROMATIC HYDROCARBONS FROM DIFFERENT SOURCES

Submitted By Mahmoud Mohamed Noreldeen Abduallah

B.Sc. of Science, (Chemistry), Faculty of Science, Cairo University, 1996

Diploma in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2002

Master in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2007

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

2017

APPROVAL SHEET

SEASONAL VARIATION OF VOLATILE POLY AROMATIC HYDROCARBONS FROM DIFFERENT SOURCES

Submitted By

Mahmoud Mohamed Noreldeen Abduallah

B.Sc. of Science, (Chemistry), Faculty of Science, Cairo University, 1996

Diploma in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2002

Master in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2007

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This Thesis Towards a Doctor of Philosophy Degree in

Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Mohsen Abd El Hamid Ahmed Gadallah

Prof. of Public Health

Faculty of Medicine

Ain Sham University

2-Prof. Dr. Mostafa Mahmoud Emaraa

Prof. of Physical Chemistry

Faculty of Science

Al-Azhar University

3-Prof. Dr. Mostafa Hassan Ragab

Prof. of Community Medicine & Environment, Department of Environmental

Medical Sciences – Institute of Environmental Studies & Research

Ain Shams University

4-Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research

Ain Shams University

SEASONAL VARIATION OF VOLATILE POLY AROMATIC HYDROCARBONS FROM DIFFERENT SOURCES

Submitted By

Mahmoud Mohamed Noreldeen Abduallah

B.Sc. of Science, (Chemistry), Faculty of Science, Cairo University, 1996

Diploma in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2002

Master in Environmental Sciences, Institute of Environmental Studies and Research,
Ain Shams University, 2007

A thesis submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Mahmoud Ahmed Ibrahim Hewahy

Prof. of Public Health, Department of Environmental Basic Sciences

Institute of Environmental Studies & Research

Ain Shams University

2-Dr. Ashraf Abdel Hameed Zahran

Lecturer of Air Pollution, Department of Natural Resources Assessment
Institute of Environmental Studies & Research
Menofia University

Acknowledgements

I would like to express my deep gratitude to Professor Dr. Mahmoud Hewahy, my research supervisor, for his patient guidance, enthusiastic encouragement and useful critiques of this research work. I would also like to thank Professor Dr. Mostafa Hassan Ragab, for his advice and assistance. My grateful thanks are also extended to Dr. Ashraf Zahran for his help in doing the data analysis, all EEAA teams who helped me in the site measurement.

I would also like to extend my thanks to the technicians of the laboratory of for their help in offering me the resources in running the program.

Finally, I wish to thank my family for their support and encouragement throughout my study.

Abstract

Understanding the seasonal variations of polycyclic aromatic hydrocarbons (PAHs) concentrations in ambient air in urban/rural or industrial regions is important to the effective control of air pollution in these regions. Based on an approximately a year round dataset, an intensive sampling program was conducted in this study, where a series of air samples was collected during this period at the four different function sites in South Al-Tabbin city.

A total of 48 atmospheric samples were collected by high volume active air sampler. The gaseous and particulate phases of PAHs were extracted and analyzed using GC/MS together. The total air concentrations of 16 USEPA PAHs in the study area ranged from $76.48 \pm 19.44 \, \mu g/m^3$ to $26995.86 \pm 2835.91 \, \mu g/m^3$, with an average concentration of $7085.08 \pm 773.98 \, \mu g/m^3$. Seasonal trends of PAH concentrations were observed with high concentration in winter and low in summer where the average concentration of PAHs in winter were ~1.6 times higher than that in summer.

The diagnostic ratio analysis was employed to determine the primary PAH sources at different function sites. The analysis indicated that different sources influence the concentration of PAHs in the function sites where coal, oil combustions, vehicle emission, and industrial processes are the main sources. Particularly, the traffic vehicle exhaust was the largest contributor for RA. Meanwhile, PAHs were predominantly from coal and oil combustions for the industrial areas (CK, TIMS and AAS).

According to BaP equivalent concentration, the potential health risks of PAHs at the two industrial sites are ~ 7.6 and ~ 4.3 times, respectively, those for residential area.

The averaged value of total BaPeq in the atmosphere of the south of El-Tabbin city is 9364 ng/m³ in 2014. The lifetime lung cancer risk from PAH exposure by inhalation in people living

in vicinity to industrial complexes is estimated by applying the BaP equivalents (BaPeq) for PAHs and the World Health Organization unit risk for BaP (UR = 8.7×10^{-5}).

The total estimated average lifetime lung cancer risk due to PAH exposure in the study area is 1.2×10^{-2} (1.2 additional cases per 100 people exposed) while the annual cases of lung cancer that could be attributed to this PAH exposure is ~ 17. The estimated risk was higher than values recommended by the World Health Organization as well as higher than the threshold value of 10^{-3} that is considered an indication of definite risk.

List of Contents

1.	Introduction	1
	1.1. The scope and objectives	4
2.	Literature Review	7
	2.1.Urban Air Quality	7
	2.2. Polycyclic Aromatic Hydrocarbons: General	
	Descriptions	9
	2.2.1. Gas to Particle Distribution of PAHs in the	
	Atmosphere	11
	2.2.2. Air Water Gas Exchange of PAHs	14
	2.2.3. Chemical Transformations of PAHs	15
	2.3. Formation of PAHs	16
	2.4. Sources and Emission of PAHs	17
	2.4.1. Stationary Sources	19

2.4.1.1. Domestic Sources	19
2.4.1.2. Industrial sources	19
2.4.2. Mobile sources	21
2.4.3. Agricultural sources	22
2.5. Physical and Chemical characteristics of PAHs	23
2.6. PAH concentration levels in the environment	30
2.7. Distribution and Spreading of PAHs in the environment	33
2.7.1. Contamination of soils	36
2.7.2. Contamination of water	37
2.7.3. Contamination of air	39
2.8. Human exposure to polycyclic aromatic hydrocarbons	40
2.8.1. Absorption of PAHs	43
2.8.2. Distribution and Excretion of PAHs	44
2.8.3. Metabolism of PAHs	44
2.9. Toxicity and Health Impact of PAHs	45

	2.9.1.PAH Carcinogenic Potencies (Toxicity Equivalency	
	Quotient Approach)	46
	2.9.2. Acute or short-term health effects	49
	2.9.3. Chronic or long-term health effects	52
	2.9.4. Carcinogenicity	53
	2.9.5. Teratogenicity	56
	2.9.6. Genotoxicity	57
	2.9.7. Biomarkers of exposure to PAHs	58
	2.10. Regulation	60
	2.11. PAH source identification method (Diagnostic Ratios of	
	PAHs)	63
3.	Materials and Methods	65
	3.1. Sampling Site Description	66
	3.2. Methodology	70
	3.2.1. Sampling system	70

3.2.2. Sampling collection materials	72
3.2.2.1. Particulate Filter	74
3.2.2.2. Sorbent Cartridge Assembly (Adsorbent tube)	74
3.2.3. Sampling collection procedure	78
3.3. Sample Extraction, Concentration, and Cleanup	83
3.4. Sample Analysis using Gas Chromatography with Mass	
Spectrometry Detection (GC/MS)	86
3.4.1. Introduction	86
3.4.2. GC/MS Instrument Specifications and Operating	
Conditions	87
3.4.3. Instrument Performance Check for GC/MS	92
3.4.4. Calibration of GC/MS	93
3.4.5. Identification and Quantification of PAHs	100
3.4.6. Quality Assurance/Quality Control (QA/QC)	101
Results and discussions	105

	4.1. Atmospheric mass concentrations of PAHs	105
	4.2. Characteristic of PAHs Profiles for different function sites	123
	4.3. Seasonal variability of PAHs concentrations	131
	4.4. Source identification of PAHs using diagnostic ratio	
	analysis	139
	4.5. Health-risk assessment	147
	4.5.1. Toxic equivalency factors: BaP equivalency	147
	4.5.2. Lifetime lung cancer risk of PAHs	151
5.	Conclusion and Recommendation	154
6.	Summary	158
Re	eferences	156
Aı	nnex 1	205

List of Figures

Figure 2.1. Schematic illustration of the air pollution path in the	
atmosphere	8
Figure 2.2. Pyrosynthesis of PAHs starting with ethane	17
Figure 2.3. Annual mean BaP concentrations measured at selected	
monitoring stations in Central London from 1950 to the present	
day	32
Figure 2.4. Main possible pathways of PAHs in the soil-plant system	
	35
Figure 2.5. Pathway for the Metabolic activation of carcinogenic	
benzo(a)pyrene compound	45
Figure 2.6. Flow chart showing short and long term health effects of	
exposure to PAHs	53
Figure 3.1. Map shows the location of four sampling sites in the south of El	
Tabbin area	68

Figure 3.2. Map of the study area where the red spots indicate sampling sites	
and the yellow lines indicate national ways	69
Figure 3.3. Typical high volume air sampler for PAHs collection with its	
internal components	71
Figure 3.4. Typical Assembled Sampling Module for holding particle filter	
and absorbent cartridge (PUF/XAD)	76
Figure 3.5. Quartz Fiber Filter used for collection of Particulate	
PAHs	77
Figure 3.6. The main constituents of the sampling sorbent cartridge	77
Figure 3.7. High Volume Air Sampling locations for each sampling site (a)	
Residential site, (b) Arab Abu Said site, (c) Coke factory site and (d) Al	
Tabbin Institute site.	81
Figure 3.8. wind rose for Al Tabbin sampling area	83
Figure 3.9. Schimadzu GC-17A-MSQP5050A used for PAHs identification	
and quantification	89

Figure 4.1. Total PAHs Concentrations (Total \sum_{16} PAHs) over the seasonal	
sampling period for the different sampling sites	107
Figure 4.2. Total of the individual PAH concentrations (\sum_i PAHs) over the	
seasonal sampling period for each sampling site	109
Figure 4.3. PAH-Homologue concentrations of samples from different	
sampling sites	123
Figure 4.4. Correlation among total PAHs and LMW-PAHs, MMW-PAHs,	
HMW-PAHs, C-PAHs and COMPAHs,	
respectively	117
Figure 4.5. PAHs profiles for the different function sites over the seasonal	
sampling period	124
Figure 4.6. Comparison of PAHs mass percentage profiles for the different	
function zones with CD_{jk} values	125
Figure 4.7. Summation of 16 PAHs concentrations (\sum_{16} PAHS) for each	
sampling season at different function sites	131

Figure 4.8. Summation of PAHs concentrations for different function sites at	
the sampling dates	132
Figure 4.9. Average of daily solar radiation (Kwh/m²/day) during year	
months at Helwan governorate	133
Figure 4.10. Seasonal ozone concentration at Helwan governorate	134
Figure 4.11. Average ambient temperature (oC) and relative humidity (%)	
during sampling dates	134
Figure 4.12. Correlations of Total PAHs concentrations and atmospheric	
temperatures during the sampling dates	135
Figure 4.13. Seasonal variations of estimated atmospheric outflow of the	
south of El Tabbin city	136
Figure 4.14. Diagnostic ratios for different function sites between	
FLA/(FLA+PYR) and PHE/(PHE+ANT)	145
Figure 4.15. Diagnostic ratios for different function sites between	
FLA/(FLA+PYR) and IcdP/(IcdP+BghiP)	146