

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Analysis of Steel Fixed Column Bases

By Mostafa Nour Eldin Mohamed AbdAllah

B.Sc. Civil Engineering Ain Shams University

A Thesis

Submitted in Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering (Structures)

Supervised by

Prof. Dr. **Abdelrahim Khalil Dessouki**

Professor of Steel Structures
Structural Engineering department
Ain Shams University

Dr.

Mohamed Saafan Abdelgawwad

Assistant Professor Structural Engineering Department Ain Shams University

©Cairo - 2015

APPROVAL SHEET

Thesis Student Name Thesis Title	Student Name : Mostafa Nour Eldin Mohamed AbdAllah		
Examiners Com	mittee:	<u>Signature</u>	
	Said Mahmoud ructures, Structural Engineering Department ng - ElMansoura University		
Professor of Steel St	Hassan Yousef Abou Donia ructures, Structural Engineering Department ng - Ain Shams University		
Professor of Steel St	rahim Khalil Dessouki ructures, Structural Engineering Department ng - Ain Shams University		

Date: 07/03/2015

INFORMATION ABOUT THE RESEARCHER

Name: Mostafa Nour Eldin Mohamed AbdAllah

Date of Birth: September 16th, 1987

Place of Birth: Egypt (Cairo)

Qualifications: B.Sc. Degree in civil Engineering (Structural Engineering) Faculty of Engineering, Ain Shams University (2009) - Excellent with Honor

Present Job: Structural Engineer at Consultant Office.

Signature:

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Structural Engineering.

The work included in this thesis has been carried out by the author in the

Department of Structural Engineering, Ain Shams University, from March

2010 to March 2015.

No part of this thesis has been submitted for a degree or a qualification at

any other university or institution.

Name

: Mostafa Nour Eldin Mohamed

Signature:

Date : 7 March 2015

iv

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Dr. Abdelrahim Khalil Dessouki, for his invaluable guidance, support and encouragement.

I also greatly appreciate the help, guidance and support provided by Dr. Mohamed Saafan throughout all stages of research.

Finally, I would like to express my appreciation to my father, my beloved mother, my family & my friends for lots of support, specially eng. Mohamed Atia.

ABSTRACT

Column base connections in steel structures are sensitive to successfully transfer internal forces and straining actions from the structure to the foundation, they may be divided according to:-

- 1) Column base exposure:
 - a) Exposed column bases and
 - b) Embedded column base plates
- 2) Structural behavior:
 - a) Fixed column base connection and
 - b) Pinned (hinged) column base connection.

There are also classification according to steel failure mode and concrete failure mode, classification according to energy dissipation capacity but they are less common. In this thesis, we are interested in exposed fixed column base connection.

Design of fixed column base and anchors has been an approximate calculation process that depends mainly on a series of assumptions; assuming a value for concrete contact stress and assuming a shape for contact stress then assuming that stresses in anchor rods reached maximum allowable tensile stress is quite inaccurate, however, different building codes stated methods for column base design that are based on a series of assumptions as well.

This thesis presents a parametric study on design and analysis of fixed column base connection using Finite Element Modeling (FEM), as well as comparison between results obtained from FEM and results from American

Institute of Steel Construction (AISC) and from the Euro Code part 8 Design Guides.

The first part of this research is Finite Element Modeling validation using previously published papers containing experimental program, which is achieved by modeling the test specimen under the exact straining actions, then compare the results obtained from the FEM with those from experimental testing.

The second part is the parametric study, which is achieved by solving a numerous amount of fixed column base connections with several configurations of straining actions, column base dimensions & material properties using the FEM, the AISC Design Guide 1 method and the Euro Code 3 method, then having the results graphically represented will allow for easier comparison between results of all three methods.

The third part is the suggested design curves, as well as formulas, which provides the designer with more accurate results, which allows for design on the most realistic bases for a safe design in much less time.

TABLE OF CONTENTS

STATEMENTi	V
ACKNOWLEDGMENTS	V
ABSTRACTv	⁄i
TABLE OF CONTENTSvii	ii
LIST OF FIGURESxi	ii
LIST OF SYMBOLSxi	X
Chapter 1	1
Introduction	1
1.1 Background	1
1.2 Research Objectives	2
1.3 Contents of the Thesis	2
Chapter 2	4
Literature Review	4
2.1 Introduction	4
2.2 Previous Research in the Subject	9
2.3 International Building Codes for Analysis of Column Base Connection 1	7
Chapter 33	6

Fini	Finite Element Modelling		36
3.1	G	eneral	36
3.2	N	Iodelling Procedure	36
3.	2.1	Element Type	36
3.	2.2	Discretization of the Mesh	39
3.	2.3	Material Definition in ABAQUS	40
	3.2	2.3.1 Steel properties definition	40
	3.2	2.3.2 Concrete properties definition	42
3.	2.4	Assigning Interaction Properties Between Parts	43
	3.2	2.4.1 Interaction between base plate & concrete surface:	44
	3.2	2.4.2 Steel to steel interaction :	44
3.	2.5	Seeding and Meshing Parts of the Assembly	45
3.	2.6	Obtaining the Results	50
Cha	ıpte	er 4	51
		ation of Finite Element Modelling	
4.1	G	eneral	51
4.2	D	escription of Experimental Tests Available in Literature Review	v 52
4.	2.1	G.N. Stamatopoulos and J. Ch. Ermopoulos (2011) [16]	52
	4.2	2.1.1 Obtaining the Results	56
	4.2	2.1.2 Comparing FE results with Experimental results	57
4.	2.2	František Wald and Z. Sokol (2008) [29]	61
	4.2	2.2.1 Comparing FE results with Experimental results	62
4.	2.3	František Wald and Z. Sokol (1995) [30]	63
	4.2	2.3.1 Comparing FE results with Experimental results	66
4.3	C	onclusions	67
Cha	pte	er 5	68

Par	amo	etric Study	. 68
5.1	Ir	ntroduction	68
5.2	D	esign charts for AISC DG1 1 st edition method	68
5	.2.1	Contact stress length (Y) calculation charts	70
5	.2.2	Anchors tension force calculation charts	71
5.3	D	esign charts for AISC DG1 2 nd edition method	72
5	.3.1	Contact stress length (Y) calculation charts	73
5	.3.2	Anchors tension force calculation charts	74
5.4	C	comparison between results from EURO Code , AISC 1st edition &	;
	AI	ISC 2 nd edition:	75
5.5	F	inite element modelling of fixed column base parametric study:	80
5	.5.1	Modelling process	80
5	.5.2	Results Output	81
	5.5	5.2.1 Concrete stress distribution	81
	5.5	5.2.2 Anchor tensile stress	82
	5.5	5.2.3 ABAQUS output	83
	,	5.5.2.3.1 Column base connection samples	83
		5.5.2.3.2 Effect of anchor rods cross sectional area	.91
5	.5.3	The Outcomes of FEM of Base Connections	98
	5.5	5.3.1 The actual contact stress distribution below column base shape	99
	5.5	5.3.2 The contact stress distribution retains its shape throughout the	
		loading stages	103
	5.5	5.3.3 Effect on Changing the concrete compressive strength on contact	
		stress	109
	5.5	5.3.4 Location of centre of the compression volume	113
	5.5	5.3.5 Calculation of the contact stress volume	119
	5.5	5.3.6 Suggested formula for the column base connection solution	122

5.5.2.3.1 Comparison between proposed method and other methods
anchor tension
5.5.3.7 Effect of adding stiffeners on contact stress distribution
5.5.3.8 Effect of taking elasticity of soil into consideration on contact
stress
Chapter 6138
Summary and Conclusions138
6.1 Summary of work presented in this Thesis
6.2 Conclusions
6.3 Recommendations for future work140
Appendix (1): Part of table of solved fixed column bases using AISC first edition
DG1141
Appendix (2): Part of table of solved fixed column bases using AISC second
edition DG1144
Appendix (3): Part of table of solved fixed column bases using EURO Code
part 3
Appendix (4): Part of table of solved fixed column bases using the proposed
method
REFERENCES153

LIST OF FIGURES

Figure 2-1: Obsolete configuration of hinged column base connection	5
Figure 2-2: Common configuration for hinged column base connection	6
Figure 2-3: Common configuration of fixed column base connection	6
Figure 2-4: R. Delesques & MM. Bourrier et Lefeuvre (1976) first	
curve [25]	10
Figure 2-5: R. Delesques & MM. Bourrier et Lefeuvre (1976) second	
curve [25]	10
Figure 2-6: Stamatopoulos et al. (1997) failure interaction curves for severa	al
combinations [15]	15
Figure 2-7: Contact stress distribution and strain due to Normal force only	in
AISC DG1 first edition [3]	18
Figure 2-8: Contact stress distribution and strain compatibilities due to	
Normal force and bending moment in AISC DG1 first edition [3]	19
Figure 2-9: Contact stress distribution and strain due to Normal force only	in
AISC DG1 second edition [4]	22
Figure 2-10: Contact stress distribution under Normal force and bending	
moment in AISC DG1 second edition [4]	22
Figure 2-11 a): Base under normal force only according to	
EURO Code [12]	26
Figure 2-12: Base under bending moment only according to	
EURO Code [15]	27
Figure 2-13: Contact stress distribution below column base under Normal	
force and bending moment according to EURO Code [12]	28
Figure 2-14: Contact stress below column base under Normal force and	
bending moment according to Iranian code of practice [2]	31
Figure 2-15: Strain comptabitiy below column base according to Iranian	
Code of Practice [2]	33
Figure 3-1 Element family commonly used in ABAQUS [1]	38
Figure 3-2 line, shell & volume elements commonly used in <i>ABAQUS</i> [1]	38
Figure 3-3 C3D8 solid element used in ABAQUS [1]	39
Figure 3-4 Typical finite element mesh used in <i>ABAQUS</i>	40

Figure 3-5 Typical stress strain curve for steel	41
Figure 3-6 Stress strain curves for various grades of concrete loaded in	
compression [5]	43
Figure 3-7: Partitioned & seeded concrete block and the meshed one	46
Figure 3-8 Partitioned & seeded base plate and the meshed one	47
Figure 3-9 Seeded steel column and the meshed one	48
Figure 3-10 Partitioned and meshed anchors	49
Figure 3-11 Meshed nuts	49
Figure 4-1 Test setup of Stamatopoulos and J. Ch. Ermopoulos [16]	53
Figure 4-2 Geometry configuration of the specimen with the frame [16]	53
Figure 4-3 location of gauges [16]	54
Figure 4-4: Determining the column base rotation angle [16]	54
Figure 4-5: Assembled FE model	55
Figure 4-6: Stress strain curve for steel as defined in FE modelling (accordi	ng
to type of steel used in experimental test)	55
Figure 4-7: Location of dial gauges to compute angle of rotation	56
Figure 4-8: Sample of calculation	57
Figure 4-9 : ABAQUS results versus experimental results (SP1, N=0 kN)	58
Figure 4-10 : ABAQUS results versus experimental results (SP1, N=99kN)	58
Figure 4-11: ABAQUS results versus experimental results (SP1,N=198 kN)) 59
Figure 4-12 : ABAQUS results versus experimental results (SP2, N=0 kN)	59
Figure 4-13: ABAQUS results versus experimental results (SP2, N=99 kN)	60 (
Figure 4-14: ABAQUS results versus experimental results	
(SP2, N=198 kN)	60
Figure 4-15 Experiment W7-4.20-prop. [29]	61
Figure 4-16 Assembled FE model	62
Figure 4-17 : ABAQUS results versus experimental results (W7-4.20-prop.)	62
Figure 4-18 : ABAQUS results versus experimental results (W8-4.20-prop.)	63
Figure 4-19 Experiment Layout [30]	64
Figure 4-20 Test specimen base plate dimensions [30]	65
Figure 4-21 Assembled FE model	65
Figure 4-22 : ABAOUS results versus experimental results (N=0, t=20mm)	66

Figure 4-23: ABAQUS results versus experimental results (N=500 kN,	
t=30mm)	66
Figure 4-24: ABAQUS results versus experimental results (N=0 ton,	
t=30mm)	67
Figure 5-1:Graphical representation of AISC first edition length of contact	
compression stress (y) (mm)	70
Figure 5-2 Graphical representation of AISC first edition anchor rods tension	on
force (N)	71
Figure 5-3: AISC DG1 second edition Design Aids first chart	73
Figure 5-4: AISC DG1 second edition Design Aids second chart	74
Figure 5-5 : Comparison between anchors tension in AISC first edition &	
AISC second edition	77
Figure 5-6 : Comparison between anchors tension in AISC first edition &	
EURO Code	78
Figure 5-7: Comparison between anchors tension in AISC second edition of	&
EURO Code	79
Figure 5-8: Typical finite element model used in parametric study	81
Figure 5-9: (only compressive stresses are shown)	83
Figure 5-10: (only tensile stresses are shown)	83
Figure 5-11: (only compressive stresses are shown)	84
Figure 5-12: (only tensile stresses are shown)	84
Figure 5-13: (only compressive stresses are shown)	85
Figure 5-14: (only tensile stresses are shown)	85
Figure 5-15: (only compressive stresses are shown)	86
Figure 5-16: (only tensile stresses are shown)	86
Figure 5-17: (only compressive stresses are shown)	87
Figure 5-18: (only tensile stresses are shown)	87
Figure 5-19: (only compressive stresses are shown)	88
Figure 5-20: (only tensile stresses are shown)	88
Figure 5-21: (only compressive stresses are shown)	89
Figure 5-22: (only tensile stresses are shown)	89
Figure 5-23: (only compressive stresses are shown)	90

Figure 5-24: (only tensile stresses are shown)	90
Figure 5-25: The average stress in anchors of the 5 anchors model was 218	•
MPa, resultant tensile force = 453.9 kN	91
Figure 5-26: The average stress in anchors of the 3 anchors model was 302	•
MPa, resultant tensile force = 376 kN	91
Figure 5-27: The average stress in anchors of the 5 anchors model was 239)
MPa, resultant tensile force $= 833.4 \text{ kN}$	92
Figure 5-28 : The average stress in anchors of the 3 anchors model was 331	
MPa, resultant tensile force = 693 kN	92
Figure 5-29: The average stress in anchors of the 3 anchors model was 218.	75
MPa, resultant tensile force = 375.3 kN	93
Figure 5-30 : The average stress in anchors of the 1 anchor model was 581	
MPa, resultant tensile force = 332.8 kN	93
Figure 5-31: The average stress in anchors of the 3 anchors model was 256	
MPa, resultant tensile force = 641.66 kN	94
Figure 5-32 : the average stress in anchors of the 1 anchor model was 643	
MPa, resultant tensile force = 537.3 kN	94
Figure 5-33: Graphical representation of tensile forces in anchors using the	
FEM	97
Figure 5-34: Symbols definition used in graphical representation of anchor	
tension using FEM	98
Figure 5-35: Plan view of contact stresses	99
Figure 5-36: Frontal view of contact stresses	100
Figure 5-37: Side view of contact stresses	100
Figure 5-38: Plan view of contact stresses	101
Figure 5-39: Frontal view of contact stresses	101
Figure 5-40: Side view of contact stresses	102
Figure 5-41: Plan view of contact stresses	102
Figure 5-42: Frontal view of contact stresses	103
Figure 5-43: Side view of contact stresses	103
Figure 5-44: Contact stress distribution under normal force of 50kN &	
moment of 10kN.m	104