

UPGRADING EXISTING EDUCATIONAL BUILDINGS TO A ZERO-NET ENERGY

 $\mathbf{B}\mathbf{y}$

Nehad Mokhtar Ahmed Khattab

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

UPGRADING EXISTING EDUCATIONAL BUILDINGS TO A ZERO-NET ENERGY

By

Nehad Mokhtar Ahmed Khattab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under the supervision of

Prof. Dr. Mahmoud Gilany

Professor of Electrical Power Engineering
Electrical Power and Machines Department
Faculty of Engineering, Cairo University

Dr. Mahmoud M. Sayed

Teacher of Electrical Power Engineering
Electrical Power and Machines Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

UPGRADING EXISTING EDUCATIONAL BUILDINGS TO A ZERO-NET ENERGY

By

Nehad Mokhtar Ahmed Khattab

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the	
Examining Committee	
Prof. Dr. Mahmoud Ibrahim Gilany	Thesis main advisor
Prof. Dr.Mohamed Salah El-Sobki	Internal Examiner
Prof. Dr. Said Elsaid Elmasry Faculty of Engineering, Helwan University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Engineer: Nehad Mokhtar Ahmed Khattab

Date of Birth: 7 / 11 / 1988
Nationality: Egyptian

E-mail: nehad.khattab88@gmail.com

Phone: +201093630990

Address: Elshorouk City – Cairo – Egypt

Registration Date: 01 / 10 / 2012 Awarding Date: / / 2017 Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Mahmoud Ibrahim Gilany

Dr. Mahmoud Said

Examiners: Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Mohamed Salah El-Sobki

Prof. Dr. Said Elsaid Elmasry (Helwan University)

Title of Thesis:

(Upgrading Existing Educational Buildings to a Zero-Net Energy)

Key Words: Zero energy buildings, Demand side management, existing educational buildings, PV panels, Egypt.

Summary: In this thesis, proposed strategies are developed and applied to a building existing in Egypt. These strategies aimed to improve the building energy efficiency and to reduce the energy consumption and show the effects of adding renewable energy system to this building. study utilized a case study for an educational building existing in El shorouk city in Egypt, Initially, it studied the characteristics of the building and its load profile along with its meteorological. The first phase of the proposed solution is to implement some strategies to minimize energy used for building lighting, air conditioning and improve the load profile. analysis is done for all applied strategies in addition to estimate saved energy for each strategy. The second phase of the solution is to include a PV system connected to the Grid in the building. The PV-system is simulated using HOMER software in order to choose the most economical and friendly environmental renewable energy system to be integrated into the building to turn it into (NZEB). The PV SYST software is used to get the suitable arrangement of the PV system, which chooses to be added to the building under study. An economic study is applied by HOMER for different PV systems to get an adequate size. This economic study considered the cost of energy and determined the payback period.

ACKNOWLEDGMENT

First of all, I wish to offer my great thanks to Allah who gives us the faith and hope to succeed.

Although my next few words couldn't express my deep feelings and respect towards my supervisors, but it may at least indicates some of those feelings.

I am honored to record my deepest sense of gratitude and thanks to *Prof. Dr. Mahmoud Gilany* for the efforts he had exerted in this research, his helpful discussions, constructive criticism and the understanding he has shown throughout this work. I do really appreciate very much his fruitful comments to this thesis.

I owe special thanks to *Dr. Mahmoud M. Sayed* for his guidance, valuable discussion and also the useful suggestions during the research period.

My special thanks are also extended to all the staff of the Electric Power and Machines Department in El-Shorouk Academy specially **Dr. Hatem Seoudy** and **Eng. Galal Abdella** for their continuous encouragement, care and support.

There are no enough words to thank my best friends **Huda Elsherbeny** and **Hadeer Shaheen** for their support of me.

I would like to dedicate a lot of thank my beloved family (my mother, my father, my sisters). You are all an inspiration to me. You have sincerely encouraged me, like no one else, from the early beginning and throughout the way.

Thank you all!

Nehad Khattab

Table of Contents

ACKNOWLED	GMENT	i
Table of Conten	ts	ii
List of Tables		vi
List of Symbols	and Abbreviations	X
O		
ABSTRACT	•••••••••••••••••••••••••••••••••••••••	xi
CHAPTER 1	: INTRODUCTION	1
1.1 Introduction	n	1
1.2 Energy Per	formance of Buildings in Egypt	2
1.2.1 Energy Us	sage in Residential Buildings	4
1.2.2 Cost of Er	nergy for Some Categories of Consumption	5
1.3 Renewable	Energy Potential in Egypt	6
1.4 Problem St	atement	7
1.5 Research O	bjectives	7
1.6 Motivation	of Studying Existing Buildings	8
1.7 Organizatio	on of the Thesis	8
	: LITERATURE REVIEW for ZERO-EN	
2.1 "Net-Zero-	Energy Buildings" Definitions	10
2.1.1 Typical A	spects in ZEB	11
2.2 Steps for C	onverting a Conventional Building to a Zero-energy Building	12
2.3 Demand Si	de Energy Management Technologies Survey	14
2.3.1 Load Man	agement Programs	14
2.3.2 Utility DS	M Programs	16
2.3.3 Energy Re	eduction Programs (Energy Efficiency Programs)	17
2.3.3.1 Ene	rgy Reduction by Improving Building Envelope	17

2.3.3.2 Energy Reduction through Lighting	19
2.3.3.3 Energy Reduction using efficient Appliances	20
2.3.3.4 Energy Reduction through Mechanical Systems (HVAC) in Building	g 20
2.4 Integrating Renewable Energy Systems	22
2.4.1 Photovoltaic (PV) Integrated into Buildings (PVIB)	22
2.4.2 Optimal Sizing of Renewable Energy System	25
2.5 Examples of Retrofitting Buildings	26
2.5.1 Toledo Museum of Art [68]	27
2.5.2 Vilnius Gediminas Technical University, Lithuania	30
2.5.3 Blaue Heimat, Residential Building, Heidelberg [69]	31
CHAPTER 3 : MAIN EQUIPMENT, TOOLS and PROCEDU USED for ZERO-ENERGY BUILDINGS	
3.1 DSM Technologies Proposed in Thesis	33
3.1.1 Solar-Thermal Cooling System	33
3.1.1.1 Absorption Cooling Systems	33
3.1.2 Heat Gain Control of Building	35
3.2 Software Programs used for Sizing the Renewable Energy Systems	41
3.3 HOMER Program	41
3.3.1 HOMER Input Data	42
3.3.2 HOMER Optimization Process	43
3.4 PVSYST Software Sizing Program	45
CHAPTER 4 : DEVELOPMENT OF AN EDUCATION BUILDING	
4.1 Operating Characteristics of the Educational Building under Study	46
4.2 Applying Building Retrofitting Strategies (Demand Side Management Technologies)	•
4.2.1 Energy- Efficient Auditing (Energy Reduction Programs)	50
4.2.1.1 Lighting Retrofitting	51

4.2.1.2 Retrofitting of HVAC System	52
4.2.1.3 Heat Gain Control through the Building (Retrofit the Building Envelope	;)55
4.2.1.4 Summary of Energy- Efficiency Strategies Costs	56
4.2.2 Changing Energy Consumption Pattern (Load Management Programs)	57
4.2.2.1 Load Shifting	57
4.3 Effect of Adding Renewable Energy System	59
4.3.1 System Description	59
4.3.1.1 Meteorological Data Analysis	60
4.3.1.2 PV module	61
4.3.1.3 Converter	63
4.3.1.4 The Grid information	64
4.3.1.5 Economics	65
4.3.1.6 Constrain Inputs	66
4.3.1.7 Load Input	67
4.3.2 The Base Case System (Case-0)	67
4.3.2.1 Estimated Load of Case-0	67
4.3.2.2 Energy Consumption in Case-0	68
4.3.3 Simulation of Case Study-1	69
4.3.3.1 Load Input for Case-1	69
4.3.4 Optimization Results for Case-1	71
4.3.4.1 Energy Consumption of Case-1	76
4.3.4.2 Economics of PV/Grid system.	77
4.3.5 Total Cost of Zero-energy Building	79
4.3.6 The System without any Retrofit Actions (Case-2)	80
4.3.7 Optimization Results for Existing System	80
4.3.8 Economics of PV/Grid System of Case 2	82
4.3.9 Comparison between Two Cases	84
4.3.10 The Payback Period	85

4.3.11 Sizing of PV System Using PVSYST Software	87
4.3.12 Simulation Steps of PVSYST Software	87
4.3.13 Simulation Results from PVSYST Software	90
CHAPTER 5 CONCLUSIONS AND FUTURE WORK	92
Conclusions	92
Future work	94
APPENDICES	104
Appendix A.1	104
Appendix A.2	110

List of Tables

	Table 1-1 Sold energy for each purpose	4
	Table 1-2: Monthly tariffs (2016/2017) [9]	5
	Table 1-3: A-Feed in Tariff for Electric Power Produced from Solar I	>V
Syste	ems [10]	6
	Table 3-1: Comparison between different window types [73]	36
	Table 3-2 Resistance of wall material	37
	Table 3-3: Resistance of Roof material	38
	Table 3-4: Search space data for an example system	43
	Table 4-1: Estimation of electrical energy needed for the building	48
	Table 4-2: The saving for lighting retrofitting actions	51
	Table 4-3: Cost of LED lighting system and payback period	51
	Table 4-4: Cost of required gas for solar A.C for each month	53
	Table 4-5: Cost of energy for existing A.C for each month	53
	Table 4-6 Energy cost saving for two systems	54
	Table 4-7: Initial costs for Solar A.C system	54
	Table 4-8: Summary of cash flow for solar A.C system	54
	Table 4-9: Costs analysis for envelope retrofit actions	55
	Table 4-10: New costs of Solar A.C	56
	Table 4-11: The initial cost for each strategies	56
	Table 4-12: Specification of PV panels	62
	Table 4-13: Summary for control parameters inputs to HOMER	67
	Table 4-14: Energy consumption monthly and energy charge	69
	Table 4-15: The pollutant emission form the grid	69
	Table 4-16: Overall Simulation Results	71
	Table 4-17: Categorized simulation results	73
	Table 4-18: Production energy for each component and consumpti	on
ener	gy	76
	Table 4-19: Grid Purchased (KWh/month) for PV/Grid system	77
	Table 4-20: Amount of Pollutant emission for PV/Grid system	77
	Table 4-21: Net Present Costs related to the PV system connected	to
Grid		78