

Effect of Some Heavy Metals on Physical and Radiation Shielding Properties of Different Glass Systems

Ph.D. Thesis in Physics Submitted to Physics Department,
Faculty of Science, Ain Shams University
Cairo, Egypt

By

Walid Adel Ahmed Mohamed

M.Sc., in Experimental Physics **Supervisors**

Prof. Dr/ Samir Ushah El khamisy

Professor of Nuclear Physics Ain Shams University

Prof. Dr/ Sayed Yahia El-Zayat

Professor of Physics Ain Shams University Prof. Dr/ Soad Abd El-Monem El fiki

Professor of Radiation Physics Ain Shams University

Prof. Dr/ Gamal Mahmoud Youef

Professor of Solid State Physics Ain Shams University

Dr/ Heba Ali Hassan Saudy

Asst. Professor of Nuclear Physics Al Azhar University

2017

Degree: Ph.D. in Physics

Title: Effect of Some Heavy Metals on Physical and Radiation

Shielding Properties of Different Glass Systems

Name: Walid Adel Ahmed Mohamed

Al Azhar University

Thesis Advisors Approved Prof. Dr. / Samir ushah El-Khamisy Physics Department, Faculty of Science, Ain Shams University Prof. Dr. / Soad Abd El-Monem El fiki Physics Department, Faculty of Science, Ain Shams University Prof. Dr/ Sayed Yahia El-Zayat Physics Department, Faculty of Science, Ain Shams University Prof. Dr. / Gamal Mahmoud Yosef Physics Department, Faculty of Science, Ain Shams University Prof. Dr. / Heba Ali Hassan Saudy Physics Department, Faculty of Science,

Name: Walid Adel Ahmed Mohamed

Degree: Ph.D. in Physics

Department: Physics

Faculty: Science

University: Ain Shams

Graduation date: 2005, Ain Shams University

Registration date: 12/1/2014

Grant date: 2017

Approval Sheet

Degree: Ph.D. in Physics

Title: Effect of Some Heavy Metals on Physical and Radiation Shielding Properties of Different Glass Systems

Name: Walid Adel Ahmed Mohamed

This Thesis for Ph.D. degree has been	approved by
Prof. Dr. / Samir Ushah El-Khamisy	
Physics Department, Faculty of Science,	
Ain Shams University	
Prof. Dr./ Soad Abd El-Monem El fiki	
Physics Department, Faculty of Science,	
Ain Shams University	
Prof. Dr. / Mohamad Suhaimi Jaafar	
Professor of Radiation Science (Retired)	
School of Physics, Universiti Sains Malaysia	
Prof. Dr. / Hoda Mohamed Eisa	
Professor of Radiation Physics	
National Institute of Standards	

Acknowledgement

First of all, the Author bows head thanking to "Allah" who paved the way and only by his will everything can be achieved, for helping and inspiring to accomplish all this work.

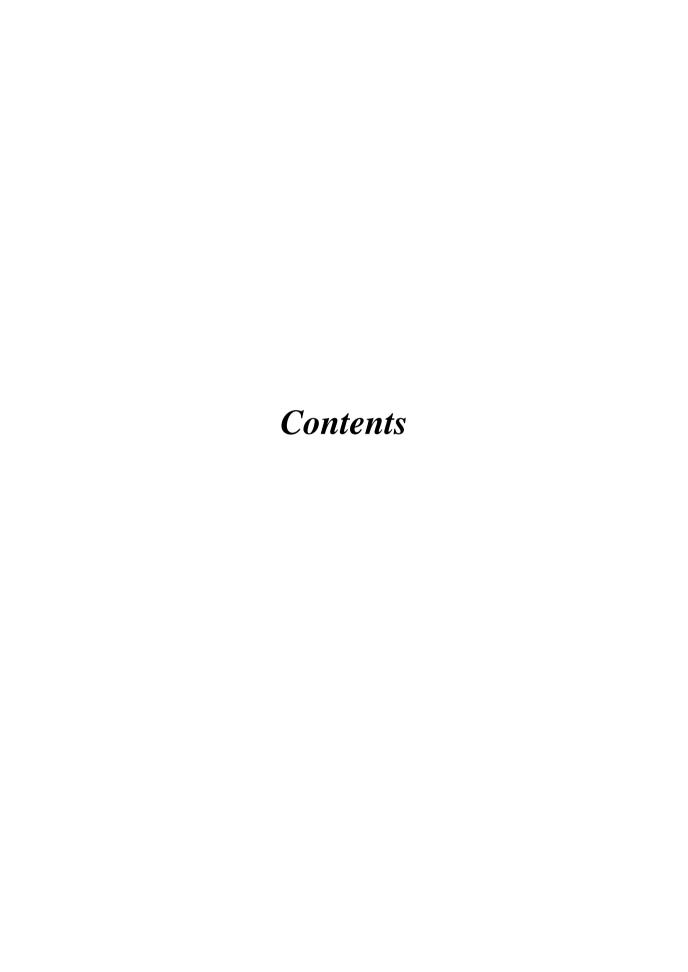
The Author is deeply grateful to Prof. Dr. Samir ushah El khamisy, Professor of Nuclear Physics, Faculty of Science, Ain Shams University, for giving this opportunity to work under his esteemed guidance, for suggesting the work and supervising it, for useful comments and help during the course of this work. Under his supervision the Author successfully overcomes many difficulties and learned a lot. the Author also wishes to express profound gratitude for his constant encouragement and critical discussions throughout this research program and during the preparation of this thesis.

Deep thanks and sincere gratitude with appreciating to **Prof. Dr.**Soad Abd El-Moneem El-fiki, Professor of Radiation Physics, Faculty of Science, Ain Shams University,. This work would not have been possible without her guidance, support and encouragement. For her effective supervision, helpful comments, and the extensive time she devoted to this work, providing many facilities during preparation and experimental measurements, and scientific supervision that helped to accomplish this study.

The Author is also grateful to his advisor Prof. Dr. Sayed Yahia El-Zayat, Professor of Physics, Faculty of Science, Ain Shams University, for her supervision, advice, and crucial contribution from the very early stage of this research by his fruitful discussion throughout this work. Above all and

Acknowledgment Page I

the most needed, he provided me unflinching encouragement and support in various ways.


The Author is deeply indebted to his advisor Prof. Dr/ Gamal Mahmoud Yosef, Professor of Solid Physics, Faculty of Science, Ain Shams University, for his constant support and useful discussion. For his effective supervision, helpful comments, and the extensive time he devoted to this work, providing many facilities during preparation and experimental measurements, and scientific supervision that helped to accomplish this study. Without his help, this work would not be possible.

The Author owes a great debt of gratitude to the completion of this work to Prof. Dr./ Heba Ali Saudy, Assistant of Nuclear Physics, Faculty of Science, Al-Azhar University, for her sincere help, continuous supervision, continuous guidance and for her insightful comments and encouragement, and also for helping to find out answers for many questions which enabled widening research from various perspectives.

Finally, the Author takes this opportunity to express sincere gratitude to his family, especially his Parents and Wife for their unceasing encouragement, help and their support in his decisions. Without whom the Author could not have made it here.

Walid Adel

Acknowledgment Page II

Contents

Content Pag	ge No.
Acknowledgement	I
Contents	III
List of Tables	VI
List of Figures	VII
List of Abbreviations	XI
List of Symbols	XII
Abstract	XIII
CHAPTER I Introducti	on
1.1. Background	1
1.2. Problem Statement	1
1.3. Research Objective	3
1.4. Scope of The Research	3
CHAPTER II Literature R	eview
2.1. Introduction to Radiation	4
2.2. Radiation Hazards and Principles of Protection	6
2.3. Radiation Shielding Materials	10
2.3.1. Gamma–Ray Shielding Materials	11
2.3.2. Neutron Shielding Materials	12
2.3.3. Current Neutron-Gamma Radiation Shielding	13
Materials	
2.4. Novel Shielding Materials	14
2.5. Introduction to Glass materials	15
2.6. Characteristics of glassy materials	17
2.6.1. Thermodynamics of Glass Formation (The V-	Γ 17

Contents Page III

diagram)		
2.6.2. Glass Form	ning Substances	18
2.6.3. Kinetic The	eory of Glass Formation	20
2.7. Methods of Glas	s Preparation	22
2.7.1. Melt– Que	ench Technique	23
2.8. Borosilicate Gla	asses	25
2.9. Heavy Metal El	ements as A glass Modifer	27
2.10. Rare Earth Ele	ements as A glass Modifier	28
2.10.1. Applica	tions of Rare-earth- Materials	29
2.11. Applications of	of Glass in Nuclear Science	30
2.11.1. Glass	as Shielding Materials	30
2.11.2. Glass a	as Waste Disposal Materials	31
2.11.3. Glass a	as Radiation Detectors	31
2.12. Literature Sur	vey	32
	•	
CHAPTER III	Methodol	ogy
	Methodol	ogy 40
CHAPTER III 3.1. Samples Pro	Methodol	
CHAPTER III 3.1. Samples Pro 3.2. Measureme	Methodol eparation	40
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Str	Methodol eparation nts and Calculations	40 41
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Stu 3.2.2.Op	Methodol eparation nts and Calculations ructural Characteristics	40 41 41
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra	Methodol eparation nts and Calculations ructural Characteristics tical Properties Measurements	40 41 41 43
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Cale	Methodol eparation nts and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements	40 41 41 43
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Cale	Methodol eparation nts and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements culations	40 41 41 43 45
CHAPTER III 3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Calc 3.3. Experiment CHAPTER IV	Methodol eparation nts and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements culations al Error Calculation	40 41 41 43 45
3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Calc 3.3. Experiment CHAPTER IV 4.1. Boro-Silica	Methodol eparation Ints and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements culations al Error Calculation Results and Discu	40 41 41 43 45 50 ssion
3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Calc 3.3. Experiment CHAPTER IV 4.1. Boro-Silica 4.1.1. Stru	Methodol eparation Ints and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements culations al Error Calculation Results and Disculate Containing Lead System	40 41 41 43 45 50 ssion 51
3.1. Samples Pro 3.2. Measureme 3.2.1. Str 3.2.2.Op 3.2.3.Ra and Calc 3.3. Experiment CHAPTER IV 4.1. Boro-Silica 4.1.1. Stru 4.1.2. Opt	Methodol eparation Ints and Calculations ructural Characteristics tical Properties Measurements adiation Attenuation Measurements culations al Error Calculation Results and Disculate Containing Lead System actural Properties	40 41 41 43 45 50 ssion 51

Contents Page IV

4.2.1. Structural Properties	71
4.2.2. Optical Properties	78
4.2.3. Attenuation Properties	80
CHAPTER V	Conclusion
Conclusion	87
References	89
Arabic Summary	

Contents Page V

List of Tables

Table No.	Description	Page
		No
Table (2.1)	Main sources of radiation	4
Table (2.2)	Dose limit recommendations (N.C.R.P)	7
Table (2.3)	Biological effects of acute dose	8
Table (2.4)	Material properties for gamma and neutron absorption	14
Table (2.5)	Various techniques and different cooling rates	25
Table (4.1)	Assignment of the infrared absorption bands present in	56
	the studied glasses	
Table (4.2)	Half value layer (HVL) for all samples as a function	67
	of lead oxide concentrations at different gamma ray	
	energies.	
Table (4.3)	Assignment of the infrared absorption bands present in	75
	the 30 PbO $-$ 20 SiO $_2$ –10 Na $_2$ O –x Gd $_2$ O $_3$ - (40 - x)	
	B ₂ O ₃ glasses	

List of Tables Page VI

List of Figures

Figure	Description	Page
		No.
Fig (2.1)	Penetrating power of ionizing radiation	6
Fig (2.2)	Relationship between glassy, liquid, and solid states	17
Fig (2.3)	Structural representation of (a) crystal and (b) glass	19
Fig (2.4)	Dependence of Rate of Crystallization of an Undercooled	22
	Liquid on Temperature	
Fig (2.5)	Schematic presentations of different methods for the	24
	preparation of glasses a) Slow cooling b) quenching c) R F.	
	sputtering d) thermal evaporation	
Fig (3.1)	The prepared samples	40
Fig (3.2)	X-ray diffractometer	41
Fig (3.3)	The density measurement apparatus	42
Fig (3.4)	Schematic of an FT-IR spectrometer	43
Fig (3.5)	UV/ Vis/ IR Spectrophotometer	45
Fig (3.6)	Schematic diagram of the scintillation γ-ray spectrometer	46
Fig (3.7)	Neutron spectrum emitting from ²⁴¹ Am-Be neutron source	49
Fig (3.8)	The neutron source cell for ²⁴¹ Am-Be	49
Fig (3.9)	Schematic diagram of neutrons measurements	50
Fig (4.1)	The amporphicity check of the xPbO -20 SiO_2 - $10 \text{ Na}_2\text{O}$ $-$	52
	$(50 - x) B_2 O_3$	
Fig (4.2)	Density and Molar volume of the xPbO – 20 SiO ₂ - 10 Na ₂ O –	53
	(50 - x) B ₂ O ₃ as a function of PbO concentration	
Fig (4.3)	The average boron-boron separation of $xPbO - 20 SiO_2$ - 10	54
	$Na_2O - (50 - x) B_2O_3$ as a function of PbO concentration	
Fig (4.4)	FTIR spectra of the xPbO -20 SiO_2 - $10 \text{ Na}_2\text{O} - (50 \text{ - x}) \text{ B}_2\text{O}_3$	55

List of Figures Page VII

	glasses
)	Decon
	1.0/

T. (4.5)		
Fig (4.5)	Deconvoluted FTIR spectra of a) PbO=20 mol %, b) PbO=30	57
	mol % c) PbO=40 mol %, d) PbO=50 mol % and e)	
	PbO=60 mol %	
Fig (4.6)	The fraction of the four-coordinated boron atoms, N ₄ , versus	58
	the PbO content of the xPbO $-$ 20 SiO ₂ - 10 Na ₂ O $-$ (50 - x)	
	B_2O_3	
Fig (4.7)	Optical transmission spectra of xPbO - 20 SiO ₂ - 10 Na ₂ O -	60
	$(50 - x) B_2O_3$ glasses	
Fig (4.8)	Variation of cutoff wavelength with PbO concentration of	61
	$xPbO - 20 SiO_2$ - 10 $Na_2O - (50 - x) B_2O_3$ glasses	
Fig (4.9)	Variation of optical band gap and refractive index of xPbO -	62
	20 SiO ₂ - 10 Na ₂ O – (50 - x) B ₂ O ₃ glasses as a function of PbO	
	concentration	
Fig (4.10a)	Attenuation relation of 20 mol % of PbO of the studied lead	63
	borosilicate glasses	
Fig (4.10b)	Attenuation relation of 30 mol % of PbO of the studied lead	63
	borosilicate glasses	
Fig (4.10c)	Attenuation relation of 40 mol % of PbO of the studied lead	64
	borosilicate glasses	
Fig (4.10d)	Attenuation relation of 50 mol % of PbO of the studied lead	64
Fig (4.10e)	borosilicate glasses Attenuation relation of 60 mol % of PbO of the studied lead	65
11g (4.100)	borosilicate glasses	03
Fig (4.11)	Mass attenuation coefficients of the prepared lead borosilicate	66
	glasses as a function of PbO concentration	
Fig (4.12)	Variation of mass attenuation coefficients with the gamma ray	68
	energies for a) PbO=20 mol %, b) PbO=30 mol % c)	

List of Figures Page VIII

PbO=40 mol %,

d) PbO=50 mol % and e) PbO=60 mol %

Fig (4.13)	Mass removal cross section of fast neutron as a function of	70
	boron oxide concentration	
Fig (4.14)	Slow neutron cross section as a function of boron oxide concentration	70
Fig (4.15)	The amorphicity check of the 30 PbO $-20 \text{ SiO}_2-10 \text{ Na}_2\text{O} -\text{x}$ Gd ₂ O ₃ - (40 - x) B ₂ O ₃ glasses	71
Fig (4.16)	Variation of density and molar volume with gadolinium oxide content of 30 PbO $-$ 20 SiO ₂ $-$ 10 Na ₂ O $-$ x Gd ₂ O ₃ $-$ (40 - x) B ₂ O ₃ glasses	72
Fig (4.17)	Average boron-boron separation of 30 PbO $-$ 20 SiO ₂ $-$ 10 Na ₂ O $-$ x Gd ₂ O ₃ $-$ (40 - x) B ₂ O ₃ glasses glasses as a function of Gd ₂ O ₃ concentration	73
Fig (4.18)	FTIR spectra of the 30 PbO – 20 SiO ₂ –10 Na ₂ O –x Gd ₂ O ₃ - (40 B ₂ O ₃ glasses	74
Fig (4.19)	Deconvoluted FTIR spectra of a) $Gd_2O_3=0$ mol %, b) $Gd_2O_3=1$ mol %, c) $Gd_2O_3=2$ mol % d) $Gd_2O_3=3$ mol %, and e) $Gd_2O_3=4$ mol %	76
Fig (4.20)	The fraction of the four-coordinated boron atoms, N_4 , as a function of Gd_2O_3 concentration	77
Fig (4.21)	Optical transmission spectra of the 30 PbO – 20 SiO ₂ –10 Na ₂ O –x Gd ₂ O ₃ - (40 - x) B ₂ O ₃ glasses	78
Fig (4.22)	Variation of optical band gap and refractive indices 30 PbO – 20 SiO ₂ –10 Na ₂ O –x Gd ₂ O ₃ - (40 - x) B ₂ O ₃ glasses as a function of Gd ₂ O ₃ concentration	79
Fig (4.23a)	3 Attenuation relation of 1 mol % of the 30 PbO – 20 SiO ₂ –10 $Na_2O = x Gd_2O_2 = (40 - x) B_2O_2 \text{ glasses}$	80

List of Figures Page IX