Recent Anterior Segment Imaging Techniques

Essay

Submitted in partial fulfillment of M.Sc Degree

In Ophthalmology

By:

Emad Hamdy Ibrahim

M.B.B.Ch

Cairo University

Supervised by

Prof Dr. Mervat Salah Mourad

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Ahmed Abdel Alim Mohamed

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2009

الوسائل الحديثة لتصوير الجزء الأمامي للعين

رسالة توطئة للحصول على درجة الماجستير في طب وجراحة العيون

رسالة مقدمة من:

الطبيب/عماد حمدي إبراهيم بكالوريوس الطب والجراحة جامعة القاهرة

تحت إشراف

أ.د./ مرفت صلاح مراد

أستاذ طب وجراحة العيون كلية الطب _ جامعة عين شمس

د /أحمد عبدالعليم محمد

أستاذ طب وجراحة العيون كلية الطب _ جامعة عين شمس

كليـــــة الطب جامعة عين شمس ٢٠٠٩

Acknowledgment

First and above all, my deepest gratitude and thanks to God for achieving any work in my life.

Words stand short when coming to express my deep gratitude and great thanks to Prof. Dr. Mervat Salah Mourad Professor of Ophthalmology, Faculty of Medicine Ain Shams University for her continuous encouragement, sincere advice, and co-operation in all steps of this work.

I am deeply grateful to Dr. Ahmed Abdel Alim Mohamed Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University who devoted his time, effort and experience to facilitate the production of this work.

I am also delegated to express my deep gratitude and thanks to all my dear professors, my colleagues and my family.

Emad Hamdy Ibrahim

List of Abbreviations

3D : Three dimensional

3-D : Three dimensionalAA : Analyzed areaAC : Anterior chamber

ACIOL : Anterior chamber intra ocular lenses

ACP : Average corneal power

ALK : Automated lamellar keratectomy ALK : Automated lamellar keratectomy

AOD : Angle opening distance

B & W : Black and white

CLAS : Corneal leaser analysis system

CSI : Center/surround index

CylCylinderDDiopterDDistance

DSI : Differential sector index EKR : Equivalent K- readings

IAI : Irregular astigmatism index

IOL : Intraocular lens

IOP : Intra ocular pressure

KHZ: Kilohertz

KI : Keratoconus index

KPI : Keratoconus predictability index

LASIK : Laser in situ keratomileusis

MHZ : Megahertz

Mink : Minimum kertementric value

OSI : Opposite sector index

PAR CTS : Posterior apical radius corneal topography

system

PAR : Posterior apical radius PAR : Posterior apical radius PC : Posterior chamber

List of Abbreviations (Cont.)

PCIOL : Posterior chamber intra ocular lenses

PRK : Photo refractive keratectomy

PRK : Photorefractive keratectomy

PVA : Potential visual acuity

QF : Quality factor

SAI : Surface asymmetry index

SDP : Slandered deviation of corneal power

Sim KSimulated keratotomySRISurface regularity indexSRISurface regularity index

T : Time

UBM : Ultrasound biomicroscopy

V : Velocity

VHF : Very high frequency

List of Figures

Fig.	Subject	Page
1	The placido disc with regular concentric rings	6
2	Corneal topography of normal corneas	20

3	Regular astigmatism with symmetric bow tie	21
4	Irregular astigmatism with asymmetrical bow	22
	tie	
5	A placido based Topography shows a case of	23
	inferior keratoconus	
6	Eye cups for Ultrasound biomicroscopy	34
7	Scanning head in supine position	34
8	UBM image of normal cornea	36
9	A cross section of the angle showing a corneo-	37
	scleral junction	
10	UBM image of normal sclera	38
11	Diagram of the angle structures	40
12	UBM image of normal iris	41
13	UBM image of normal ciliary body	42
14	UBM image of angle closure due to relative	44
	pupillary block before and after laser	
	iridotomy	
15	UBM image of plateau iris syndrome	46
16	UBM image of synechiae with closed angle	47
17	UBM image of supraciliary effusion	48
18	UBM image of malignant glaucoma with	50
	superaciliary effusion	
19	UBM image of surgical irdectomy blocked by	51
	vitreous (oblique arrow)	
20	UBM image of episcleral scarring	52
21	UBM image of occlusion of internal ostium	52
22	UBM image of encapsulated bleb	54
23	UBM image of lid nevus	55
24	UBM image of pigmented juxtalimbal nevus	56
	with low-level reflectivity and multiple cystic	
	areas	

List of Figures (Cont.)

Fig.	Subject	Page
25	UBM image of conjunctival melanoma near	57
	the limbus showing low regular reflectivity	

	extends to but not through the underlying	
	sclera	
26	UBM image of midzonal cyst of iris pigment epithelium. Note fusiform shape of primary	58
	cyst and clear intracavitary fluid	
27	UBM image of angle recession showing tear into the face of the ciliary body. Ciliary body	59
	tissue is still attached to the scleral spur	
28	UBM image of iridodialysis showing disinsertion of iris at scleral spur	60
29	UBM image of cyclodialysis showing complete disinsertion of the ciliary body from the scleral spur accompanied by supraciliary effusion	61
30	UBM image of foreign body in the angle penetrating the iris and reaching anterior surface of the lens	62
31	The basic optical geometry of an ordinary camera	69
32	The basic optical geometry of scheimpflug camera.	70
33	Rotating Scheimpflug camera	71
34	Rotating Scheimpflug camera	72
35	Pentacam Scheimpflug image of the anterior segment of the normal eye	73
36	Scheimpflug image with anterior chamber measurements	75

List of Figures (Cont.)

Fig.	Subject			Page		
37	Scheimpflug density	images	shows	the	cataract	76
38	Scheimpflug	image	of bila	ateral	anterior	77

	lenticonus	
39	Pentacam elevation map	78
40	Pentacam report of classical Keratoconus	78
41	Pentacam True Net Power map, post LASIK	80
42	A pentacam reports of a pachymetry of a	80
	cornea	
43	Pentacam's Holladay report	83
44	Pentacam's Holladay Report of a virgin eye	84

Contents

	Page
List of Abbreviations	
List of Figures	
Introduction and Aim of the Work	
Corneal topography	3

Introduction to corneal topography	3
Corneal optics and structure	3
Corneal shape	5
Principles of the vediokeratography	5
Interpretation of Topographic Maps	9
Interpretation of Topographic Indices	14
Corneal Topography in normal corneas	19
Uses of cornel topography	21
Significance of cornel topography in LASIK	26
Ultrasound imaging	28
Introduction to ultrasound	28
Pulse-Echo System	29
Ultrasound in ophthalmology	30
A-Scan	30
B-Scan	31
Ultrasound biomicroscopy (UBM)	32
Instrumentation	33
Technique	33
Normal UBM anatomical ocular findings	35
Indications for UBM	43
* Glaucoma	43
* Tumors	54
* Trauma	58
* Uveitis	63
New technologies	64
Very high frequency (VHF) ultrasound	65
Advantages of the VHF ultrasound	65
Clinical uses of VHF ultrasound	67
Scheimpflug based anterior segment imaging	68
History	68
Optical principle	68
Advantages of oculus pentacam	70
Commercially available devices	72
Uses as Scheimpflug image	73
Uses of pentacam in corneal topography	78
Summary	85
Reference	87
Arabic summary	
•	

الملخص العربي

منذ بداية ابتداع علم طب وجراحة العيون كانت هناك دائماً حاجة إلى تطوير وسائل الفحص للأجزاء المختلفة للعين. وتتاقش هذه الرسالة وسائل فحص الجزء الأمامي من العين كالماسح المقطعي للقرنية والفحص باستخدام المجهري الحيوي الفوق صوتي على التردد وكاميرا شايمفلوج.

تتطور الماسح المقطعي للقرنية تطوراً سريعاً وذلك نتيجة التقدم في جراحات تصحيح عيوب الإبصار وهو وسيلة لقياس وتحديد شكل وسمك القرنية ويستخدم كذلك في تشخيص أمراض القرنية كالقرنية المخروطية وتحديد الأشخاص الملائمين لعمليات تصحيح الإبصار.

المجهري الحيوي الفوق صوتي عالي التردد يوفر صوراً عالية الجودة للجزء الأمامي من العين ويستخدم في تشخيص

وعلاج الأمراض المختلفة للجزء الأمامي من العين كالجلوكوما والأورام والإصابات والالتهابات.

كاميرا شايمفلوج تستطيع تصوير الجزء الأمامي من العين بداية من سطح القرنية حتى نهاية عدسة العين.

وقد ناقشت الرسالة بالتفصيل مزايا وعيوب كل طريقة ودواعي استعمالها في مجالات الإكلينيكية المختلفة.

Introduction

Imaging in Ophthalmology has considerably improved over the past years, but only selected techniques allow high resolution imaging of anterior segment (*Wilkins et al.*, 1996).

From the imaging techniques of the anterior segment that provide high resolution, the ultrasound biomicoscopy (UBM), which is useful in diagnosis of a wide variety of glaucoma disorders, inflammatory diseases, anterior segment tumours and trauma (*Woo et al.*, 1999). Nowadays, there are two instruments, which are rising in the field of ultrasound imaging. The very high frequency ultrasound (VHF) is also used in evolution of corneal changes produced by refractive surgery. The three dimensional UBM investigate the performance of accommodative intra ocular lens and study the mechanism of accommodation and presbyopia (*Stacks et al.*, 2005).

Imaging techniques of the cornea are developing rapidly, mainly because of recent advances in refractive surgery. From these techniques the corneal topography which are a placido disc type which is made up of multiple circles projected on the corneal surface and the resultant circles are captured with video camera and digitized, orbscan which is the most common instrument in clinical practice. They measure and quantify the shape and the curvature of the corneal surfaces and are used primarily as a screening tool to evaluate prospective refractive surgery candidates and a diagnostic aid in evaluating refractive surgery patient with poor out come. (*Peter et al., 2005*).

Oculus pentacam is a new imaging device, that scans and measures the cornea and anterior segment of the eye, with Scheimpflug camera that rotates around a common axis. (*Holladay et al.*, 2005). It has a golden role in refractive surgery as it gives an idea about the anterior and posterior corneal surfaces and corneal thickness from limbus to limbus. That is useful in preoperative assessment, and postoperative for patient seeking for retreatment to determine the residual stromal tissue (*Buebl et al.*, 2006).

Pentacam can analyze the crystalline lens density, and measure the intra ocular lens tilt and decentration, also the depth of anterior chamber in planning of ins-crowed intra ocular lens (*Gudmundsdottir et al.*, 2005).

Pentacam has a role in management of glaucoma by follow up changes in the angle of anterior chamber in response to pharmacological or surgical intervention and image the filtration bleb after glaucoma surgery (*Buebl et al.*, 2006).

Aim of the Work

To evaluate the various imaging techniques for investigating anterior segment diseases using ultrasound biomicroscopy, corneal topography and oculus pentacam.

Corneal Topography

Introduction

Imaging techniques of the cornea are developing rapidly, mainly because of recent advances in refractive surgery. To understand the significance of new imaging techniques the relevant principles of corneal optics are reviewed. The discussion of the most common clinical method of Placido based corneal topography emphasizes important concepts of its clinical interpretation (*Peter et al.*, 2005).

Corneal topography is a method of measuring and quantifying the shape and the curvature of the corneal surface. Most topographers consist of a placido disc made up of multiple circles which is projected on the corneal surface. The resultant circular images are reflected and captured with a video camera and digitized (*Joo et al.*, 1999).

Corneal optics and structure:

Different concepts are used to characterize optical properties of the cornea.

- Curvature of its anterior surface is about 7.8mm and posterior surface is 6.5mm.
- The shape of the anterior and posterior surface can be expressed in micrometers as the elevation of the actual

surface relative to a chosen reference surface (e.g. sphere).

These 2 concepts can characterize the overall shape and the macro-irregularities of the corneal surface (e.g. corneal astigmatism).

- Local surface changes can be expressed in micrometers.
 Smoothness of the surface is optically very important, and any micro irregularities of the corneal surface can significantly degrade the image.
- Power of the cornea expressed as refraction in diopters is an optical property dependent on the shape of the surfaces and the refractive index of the surface. The average anterior and posterior corneal power is 48 diopters (D) and 6.8D respectively. To simplify it in clinical practice or in keratometry, a substitution with one refractive surface with the resulting corneal power of 42-44 D often used.
- Thickness of the cornea is about 0.5 mm at the center and 1.1mm at the periphery. Change in the thickness can induce further changes of its shape because of biomechanical changes, such as altered elasticity of the remaining tissue.

This concept is a simplification, ignoring the fact that the refracting surface is air-tear interface, and it does not account for the oblique incidence of incoming light in the corneal periphery, (*Holladay et al.*, 1997).