

Design, Analysis, Simulation, and Applications of 741 Op-Amps as a Signal Converter Circuits on Different Environmental Conditions

Thesis
Submitted for Ph. D. Degree in Philosophy of Science
(Physics)

By

Wafaa Abed El-Basit Abed El-Rhman Abed El-Latif

Under Supervision of

Prof. Dr. Hoda A. Ashry
Professor of Radiation Physics
National Center for Radiation Research & Technology

Prof. Dr. Fouad A.S. Soliman Professor of Electronics and Computer Eng. Nuclear Materials Authority

Prof. Dr. Aisha M. Swidan Professor of Electronics Dr. Safaa M.R. El-Ghanam Lecturer of Electronics

Physics Department
University College of Women for Arts, Science and Education
Ain Shams University

2007

كلية البنات للأداب و العلوم و التربية قسم الفيزياء

دراسة تصميم و تحليل و تطبيق مكبرات العمليات في الدوائر الرقمية في ظروف بيئة تشغيل مختلفة

وفاء عبد الباسط عبد الرحمن عبد اللطيف

المدرس المساعد بقسم الفيزياء كلية البنات ـ جامعة عين شمس

(الفيزياء)

. / هدى عبد المنعم عشرى أستاذ الفيزياء الإشعاعية بالمركز القومي لبحوث و تكنولوجيا الإشعاع

. / فواد عبد المنعم سعد سليمان أستاذ هندسة الإلكترونيات و الحاسبات هيئة المواد النووية

/ مدرس الإلكترونيات بقسم الفيزياء كلية البنات جامعة عين شمس / عائشة مصطفى سويدان أستاذ الإلكترونيات بقسم الفيزياء كلية البنات جامعة عين شمس

كلية البنات للعلوم والآداب والتربية جامعة عين شمس

2007

بسم الله الرحمن الرحيم

(ميكما مياحا حبن كان المتملذ الما إله ملذ لا كانميس)

(حدق الله العظيم)

الآية (35) سورة البغره.

Acknowledgements

First, I would like to thank *ALLAH* said that; "any work without good definite purpose is a scattered cinder". Our main purpose for this work is seeking *ALLAH* pleasing and satisfaction".

The author would like to thank *Prof. Dr. Amera Dakrory* the head of Physics Department for her continuos encouragement and extraordinary help.

Also, the author wishes to express her gratitude, to *Prof. H. A. Ashry*, Chairman of Radiation Research branch, National Center for Radiation Research & Technology, *Prof. Dr. Eng. Fouad Abd-El Moniem Saad Soliman*, Vice President, Exploration Sector, Nuclear Materials Authority, *Dr Aisha Mostafa Swidan*, Prof. of Electronics, Physics Department, Women's College, Ain Shams University and *Dr. Safaa Mohamed Raushidy El-Ghanam*, Lecturer of Electronics, Physics Department, Women's College, Ain Shams University for their capable supervision, fruitful guidance throughout the course of the work, and their continuos encouragement.

Also, many thanks for all members of Physics Department for kind cooperation.

Finally, I would like to thank my family for continuous encouragement and patience.

Abstract

The present thesis is devoted on studying the effect of the different environmental conditions (heat and radiation) on the electrical parameters of the four sets of 741 operational amplifiers (op-amps). The samples are chosen with different manufacturing techniques, they are: µA741 CN (Fairchild), LM741 CN (National Semiconductor), and HA17741 OK & HA17741 1D1 (Hitachi). The main investigated electrical parameters are input offset voltage, input bias current, input offset current, closed loop gain, common-mode rejection ratio, input impedance, output impedance and slew rate. Besides, the study is extended to include some applications for such commonly used amplifiers on the field of digital- and signal conversion- circuits; digital-to-analog, analog-to-digital converters, integrator, differentiator and Schmitt trigger. In this concern, the design and analysis of the different investigated circuits were carried out experimentally, where the obtained results were compared with those obtained either by applying a special Electronic Workbench Software Package or from mathematical models solved by computer programming using C++ language.

The effect of the circuit elements on the operation of the proposed signal conversion circuits (Integrator, Differentiator and Schmitt trigger) is considered experimentally, where the obtained results are shown to be in close agreement with the simulation- and theoretical- results.

The study is extended to include the effect of temperature (up to around 75 °C) on the electrical parameters of the different operational amplifiers and the operation of the proposed signal conversion circuits.

The obtained results were compared with those of the simulation, where an excellent agreement was achieved.

As the op-amps are widely used in many electronic instrumentation which can be exposed to different types of radiation, so, the present study can be considered as a trial to shed further light on the effect of gamma radiation on the physical and electrical properties of the proposed operational amplifiers. As well as on the operation of the investigated signal conversion circuits. It is clearly shown that a pronounced change occurs on the electrical characteristics of the op-amps., and consequently the devices may lose their main features. The input offset voltage, input offset current, and input bias current are shown to increase with increasing gamma dose. Also, the closed loop gain of the op-amps. are shown to decrease with increasing gamma dose, where its decreasing rate is considered as a function of the operating frequency value. As a result, the slew rate, common-mode rejection ratio and input impedance were shown to decrease with increasing gamma dose levels. On the other hand, and as the output impedance is inversely proportional to the gain; so, its value increases with increasing gamma exposure. Finally, it is clearly shown that the radiation dependence of the op-amp electrical parameters is a function of the fabrication technique of the op-amps, where, the opamps of the types HA17741 1D1 and HA17741 OK are shown to be less sensitive to gamma rays exposure than the op-amps of the types LM741 CN and µA741 CN.

Also, the behavior of signal conversion circuits was studied under the effect of gamma rays dose levels (from 0 up to 20 kGy). The transfer functions of binary weighted resistor DAC and R-2R ladder DAC lose their linearity, due to gamma exposure. On the other hand, there is a decrease in the output voltage of the ladder R-2R DAC circuit under the influence of gamma ray. While the radiation slightly affected the transfer function of flash analog-to-digital converter.

In the integrator and differentiator circuits, the dc voltage increases with increasing the input offset voltage of operational amplifiers. This input offset voltage increases with increasing radiation doses, so, the output waveforms of both circuits the maximum-and-minimum-edges are shifted upward. On the other hand, the gain of these circuits was independent on gamma doses from the low frequency up to around 40 kHz, but in higher frequencies the gain decreases. Also, the results show that, the maximum and minimum edges at different gamma doses of integrator and differentiator were dependent on frequency values in all op-amps.

Finally, in the Schmitt trigger circuit, the lower threshold voltage level (LTL) increases with increasing the offset voltage, which increases with increasing γ -dose levels.

Contents

List of symbols and abbreviations

Abstract

Chapte	er 1 Introduction	Page No.
1.1	Operational amplifier history	1
1.2	Waveshaping	6
1.2.1	Digital-to-analog and analog-to-digital converter	s6
1.2.2	Integrators and differentiators	7
1.2.3	Schmitt trigger	8
1.3	Objectives of the present work	9
Chapte	er 2 Theory of Operation	
2.1	Operational amplifier basics	13
2.2	The ideal op amp	14
2.3	Practical operational amplifiers	15
2.4	Op-Amp parameters	15
2.4.1	Input offset voltage	15
2.4.2	Input bias current	15
2.4.3	Input offset current	
2.4.4	Open-loop gain	16
2.4.5	Closed-loop gain for ideal op-amp	18
2.4.6	Closed-loop gain for practical op-amp: analysis languative feedback	
2.4.7	Slew rate	22
2.4.8	Common-mode rejection ratio	22
2.4.9	Input impedance	24

		Page No.
2.4.9.1	Input impedance of op amps	25
2.4.9.2	Input impedance of non-inverting and inverting amplifiers	26
2.4.10	Output impedance	27
2.5	Signal conversion circuits	29
2.5.1	Digital to analog converter	29
2.5.1.1	Scaling adder (weighted resistors) digital-to-analog converter	
2.5.1.2	The resistor ladder converter (R-2R ladder DAC)	31
2.5.1.3	Transfer function of DAC	34
2.5.1.4	Static errors	36
2.5.2	Analog-to-digital converter	41
2.5.2.1	Flash ADC	41
2.5.2.1.1	The ideal transfer function	42
2.5.2.1.2	Static parameters	43
2.5.2.2	Integrating ADCs	47
2.5.2.2.1	Delta-sigma () ADC	47
2.5.3	Electronic integration	49
2.5.3.1	Ideal inverting integrator	50
2.5.3.2	Practical integrators	52
2.5.4	Electronic differentiation	54
2.5.4.1	Practical differentiators	56
2.5.5	The Schmitt trigger (regenerative comparator)	59
Chapter	23 Experimental Apparatus and Proceed	lures
3.1	Experimental apparatus	67
3.1.1	RCL meter	67
3.1.2	Digitizing oscilloscope	69

	Pa	ge No.
3.1.3	Function generator /arbitrary waveform generator	70
3.1.4	Regulated DC power supply	71
3.1.5	Digital multimeter	72
3.2	Gamma irradiators	73
3.3	Experimental procedures	75
3.3.1	Electrical parameters of operational amplifier	75
3.3.1.1	Input offset voltage	75
3.3.1.2	Input bias and offset currents	76
3.3.1.3	Frequency response for closed loop gain	77
3.3.1.4	Common-mode rejection ratio	78
3.3.1.5	Input impedance	79
3.3.1.6	Output impedance	80
3.3.1.7	Slew rate	81
3.3.2	Temperature effects	81
3.3.3	Gamma ray effects	82
3.3.4	Design of signal conversion circuits	83
3.3.4.1	Digital-to-analog converter	83
3.3.4.1.1	Binary-weighted digital-to-analog converter	83
3.3.4.1.2	R-2R ladder digital-to-analog converter	84
3.3.4.2	Analog-to-digital converter	84
3.3.4.2.1	Flash analog-to-digital converter	84
3.3.4.2.2	Delta-sigma () ADC	86
3.3.4.3	Integrator circuit	87
3.3.4.4	Differentiator circuit	87
3.3.4.5	Schmitt trigger circuit	87
3.3.5	Circuit elements effect on the operation of some signal conversion systems	

3.3.6	Page No. Circuit simulation
3.3.7	Temperature effects on signal conversion circuits88
3.3.8	Gamma ray effects on signal conversion circuits89
Chapter	Results and Discussion
4.1	Measurement of the electrical parameters of some types of "741" op- amps91
4.1.1	Input offset voltage92
4.1.2	Input offset- and bias- currents92
4.1.3	Closed loop gain93
4.1.4	Common-mode rejection ratio95
4.1.5	Input impedance97
4.1.6	Output impedance98
4.1.7	Slew rate
4.2	Signal conversion circuits100
4.2.1	Digital-to-analog converter100
4.2.1.1	Binary-weighted DAC100
4.2.1.2	R-2R ladder DAC105
4.2.2	Analog-to-digital converter107
4.2.2.1	Flash ADC10
4.2.2.2	Delta-sigma () ADC110
4.2.2.2.1	Simulation data111
4.2.2.2.2	Effects of input signal112
4.2.3	Integrator circuit115
4.2.3.1	Effect of passive components on the output waveform115
4.2.3.2	Effects of passive component on the bode plot of integrator
4.2.3.3	Frequency dependence of the integrator operation124

	Page No.
4.2.3.4	Simulation of practical integrator126
4.2.3.5	Comparison between experimental, simulation, and theoretical results of practical integrator127
4.2.4	Differentiator circuit
4.2.4.1	Effect of circuit elements
4.2.4.2	Computer simulation of differentiator circuits139
4.2.4.3	Comparison between experimental, simulation, and theoretical analysis of differentiator circuits142
4.2.5	Schmitt trigger circuit
4.2.5.1	Computer simulation of Schmitt trigger circuit151
4.2.5.2	Effects of operating conditions152
Chapte	r 5 Temperature Effects
5.1	Temperature effects experimentally and simulation on the electrical parameters of "741" op-amps161
5.1.1	Temperature drift of input offset voltage and current161
5.1.1.1	Input offset voltage
5.1.1.2	Input bias current and offset current166
5.1.2	Closed loop gain169
5.1.3	Common-mode rejection ratio172
5.1.4	Input impedance
5.1.5	Output impedance
5.1.6	Slew rate
5.2	Temperature effect on signal conversion circuits179
5.2.1	Digital to analog converters179
5.2.2	Analog to digital converters
5.2.3	Integrator circuit
5.2.4	Differentiator circuit 186

	Page N	Vo.		
5.2.5	The operation of Schmitt trigger at different bias voltage	189		
5.2.5.1	At bias 0 Volt / 5 Volts	189		
5.2.5.2	At bias ± 15 Volts	91		
Chapter	6 Gamma Ray Effect			
6.1	Introduction	195		
6.2	Gamma ray effects on electrical parameters of 741 operation amplifiers			
6.2.1	Input offset voltage and current	196		
6.2.2	Input bias current1	98		
6.2.3	Closed loop gain.	200		
6.2.4	Slew rate	201		
6.2.5	Common-mode rejection ratio.	202		
6.2.6	Input impedance	203		
6.2.7	Output impedance	205		
6.3	Gamma ray effects on signal conversion circuits	206		
6.3.1	Digital-to-analog converter	206		
6.3.1.1	Binary-weighted DAC	206		
6.3.1.2	R-2R ladder DAC2	208		
6.3.2	Analog-to-digital converter	11		
6.3.2.1	Flash ADC	211		
6.3.3	Integrator circuits	212		
6.3.4	Differentiator circuits.	216		
6.3.5	Schmitt trigger circuit	220		
Chapter	7 Conclusions	223		
Appendi	x A Computer Programs			
Appendix B Data Sheets of Operational Amplifiers				

List of Symbols and Abbreviations

Op-Amp Operational amplifier

DAC Digital-to-analog converter

ADC Analog-to-digital converter

V_{io} Input offset voltage

I_B Input bias current

Input offset current

Z_{in} Input impedance

Z_{out} Output impedance

A_o Open-loop voltage gain

SR Slew rate

CMRR Common-Mode Rejection Ratio

GBW Gain bandwidth product

 f_T Unity gain bandwidth

 A_C Closed loop gain

s Feedback ratio

 A_o S Loop gain

A_d Differential gain

A_{cm} Common-mode gain

dB Decibel

LSB Least-significant bit
MSB Most-significant bit

DNL Differential non linearity

INL Integral non linearity

Maximum The maximum amplitude, typically the most positive

peak voltage

Minimum The minimum amplitude, typically the most negative

peak voltage.

LTL Lower trigger level

UTL Upper trigger level