

Ain Shams University Faculty of Engineering Department of Structural Engineering

Effect of Loading and Supporting Area on Shear behavior of **Concrete Deep Beams**

A Thesis Submitted in partial fulfillment for the requirements of The Degree of Master of Science in Civil Engineering

By

AHMED MOHAMED MOSTAFA SAAD

B.Sc., 2010,

Graduate Student, Structural Engineering Department Ain Shams University

Supervised by

Dr. Gamal Hussein Mahmoud

Associate Professor Structural Engineering Department Ain Shams University

Dr. Sayed Hussein Sayed

Associate professor Materials and Quality control Institute Housing and Building National Research Center

Dr. Nasr Eid Nasr

Assistant Professor Structural Engineering Department Ain Shams University

> Cairo 2017

INFORMATION ABOUT THE RESEARCHER

Name: Ahmed Mohamed Mostafa Saad Eldin

Date of Birth: April, 28th, 1988

Place of Birth: Egypt

Last Academic Degree: 2010, B.Sc. in Structural Engineering, Faculty of Engineering,

Ain-Shams University

Present Job: Structural Engineer

Signature:

Disclaimer

This thesis is submitted as partial fulfillment of M.Sc degree in Civil Engineering, to

Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out during the period from 2011 to 2017,

and no part of it has been submitted for a degree or qualification at any other scientific

entity.

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others

Name: Ahmed Mohamed Mostafa Saad Eldin

Signature:

Date: / /2017

i

AKNOWLEDGMENTS

Above all, I thank Allah for giving me the power and patience to successfully accomplish my M.Sc study. This thesis is dedicated to my family for their endless support and encouragement throughout my life. Their unconditional love has been source of inspiration. I could never achieve this work without their endless encouragement and assistance.

I would like to express my appreciation to the members of my advisory committee for their direction and guidance. I am grateful to **Dr. Gamal Hussein**, for his support and assistance in this research effort. His helpful discussions and comments on the study are gratefully acknowledged.

I would also like to thank **Dr. Sayed Hussein** for his guidance. His willingness to share his time and profound insight into the subject matter contributed to making this study a positive learning experience.

My special thanks are extended to **Dr. Nasr Eid**, who has been extremely helpful and supportive throughout the study. I am very grateful for his advice and personal concern for the study. His encouragement and the confidence he placed in me during the study that made the task a lot more enjoyable.

Last but not least, I am unable to thank my family, friends and colleagues for their continuous support, great effort and sacrifice they provided for me to complete this work.

I really grateful acknowledge the encourage support from all of you. May Allah make this modest work benefit all concerned and rewards us all.

ABSTRACT

The objective of this thesis is to investigate the effect of loading and supporting area on shear behavior of concrete deep beams, examine the effect of this parameter on size effect of deep beams, and to Study of current design codes procedures and accuracy for predicting shear strength for concrete deep beams. This thesis is carried out with a focus on validating the theoretical data against actual experimental results. All results are compared together to reach a conclusion on how to predict accurately the shear strength of deep beams taking into consideration size effect phenomenon. The thesis is divided into seven chapters.

Chapter 1: Introduction

This chapter presents an overview of the research that includes introduction, problem statement and motivation. This chapter also provides a description of the main and sub-objectives of the research.

Chapter 2: Literature Review

The literature review is presented in Chapter 2. The review covers the basic shear theory in beams and deep beams, description of the size effect phenomenon, the main factors that effects shear behavior and size effect, and previous studies done by other researches.

Chapter 3: Experimental Work

Chapter 3 is describing the experimental program done in this research in details, from materials used, casting procedure to the specimen's details, and finally the testing procedure.

Chapter 4: Experimental Results

Chapter 4 focuses on showing the cracking patterns, load deflection relationship, cracking and ultimate loads, and failure modes of tested specimens.

Chapter 5: Discussion of Experimental Results

This chapter describes the results displayed in the previous chapter, and the comparison between the experimental results by classifying the tested beams in multiple groups to better understand the effect of the studied parameters.

Chapter 6: Theoretical Analysis

In chapter 6, the methods described in the Egyptian, American, and European codes are used to calculate the shear strength of the beams, computer software CAST is also used to obtain results from strut and tie models. All these result are then compared with the experimental results.

Chapter 7: Conclusion and Future Work

As the final chapter in this thesis, chapter 7 highlights the contributions and the conclusions reached from both analytical and experimental studies, it also suggests future work that can carried out to take into consideration other parameters that have not been the focus of this thesis.

TABLE OF CONTENT

Disclaime	r	i
AKNOWI	LEDGMENTS	ii
Abstract		iii
Chapter 1	: Intorduction	1
1.1 I	ntroduction	1
1.2 I	Purpose of investigation	2
1.3	Thesis structure	3
Chapter 2	: Litreture Review	4
2.1 I	ntroduction	4
2.2 H	Basic shear theory in beams	4
2.3 I	Deep beams	9
2.4	Shear in deep beams	10
2.4.1	Compressive force path method	11
2.4.2	Strut and tie models	13
2.5 I	Factors affecting deep beams shear behaviour	18
2.5.1	Concrete compressive strength (Fcu)	18
2.5.2	Beam width	20
2.5.3	Main tension steel	20
2.5.4	Web reinforcement	22
2.5.5	Span-depth ratio (led)	25
2.5.6	Shear span-depth ratio (ad)	26
2.5.7	Openings	28
2.5.8	Loading Pattern (top or bottom loaded)	30
2.5.9	Load application method and type of support	32
2.5.10	0 Dimension of supporting and loading plates	33
2.6	Size effect	34
2.6.1	Review of the size effect law	35

2.6	5.2	Size effect on shear behaviour of deep beams	36
2.6	5.3	Previous size effect investigations	37
2.6	5.4	Size effect mitigation	44
Chapte	r 3:]	Experimental Work	46
3.1	Int	roduction	46
3.2	Ma	aterials	46
3.2	2.1	Coarse Aggregate and Sand	47
3.2	2.2	Cement	47
3.2	2.3	Mixing Water	47
3.2	2.4	Steel Reinforcement	47
3.3	Co	oncrete Mix	47
3.4	Pre	eparation of Test Specimen	48
3.5	Pro	operties of Concrete	51
3.6	Sp	ecimen Details	52
3.7	Ins	strumentation and Testing Procedure	58
Chapte	r 4:]	Experimental Results	61
4.1	Int	roduction	61
4.2	Ex	perimental Results	63
4.2	2.1	Cracking Pattern	63
4.2	2.2	Load Deflection Relationship	75
4.2	2.3	Failure Modes	80
4.2	2.4	Cracking and Ultimate Loads	86
4.2	2.5	Reinforcement Strain Measurements	87
Chapte	r 5:]	Discussion of Experimental Results	93
5.1	Int	roduction	93
5.2	Di	scussion of Results of the Tested Beams	94
5.2	2.1	Effect of beam depth	94
5.2	2.2	Effect of loading and supporting plates	102
Chapte	r 6: ′	Theoretical Analysis	111
6.1	Int	roduction	111
6.2	Di	fferent design approaches	111

6.2	2.1 Empirical Design Method	111
6.2	2.2 Strut-and-Tie Model	115
6.2	2.3 Computer based STM software (CAST)	121
6.3	Comparison between Results	123
6.4	Size Effect Calculation	134
Chapte	r 7: Conclusion and Future Work	145
7.1	Introduction	145
7.2	Conclusions and Recommendations	146
7.3	Recommendations for Future Works	147

LIST OF FIGURES

Figure (2-1), Truss analogy for beams failing in shear	_ 5
Figure (2-2), Shear stresses in an elastic beam	_ 6
Figure (2-3), Normal, shear, and principal stresses in uncracked beam	_ 8
Figure (2-4), Deformation patterns of slender beams and deep beams	10
Figure (2-5), Path of compressive force and corresponding outline of compressive str	ress
trajectories for a typical deep beam. (Kong 2002)	11
Figure (2-6), Proposed models for deep beams under (a) single-point (b) two-point and	d/or
uniform loading. (Kong 2002)	12
Figure (2-7), Components of STM	14
Figure (2-8), Example strut-and-tie model, an acceptable Model and Poor Model	15
Figure (2-9), Strut shapes	16
Figure (2-10), Singular and smeared nodes	17
Figure (2-11), Different types of nodes	18
Figure (2-12), Ultimate shear stress as function of fc	19
Figure (2-13), Variation of total ultimate shear strength with pt & ad	21
Figure (2-14), Ultimate shear stress versus ad	22
Figure (2-15), Ultimate shear stress versus vertical shear reinforcement ρν	23
Figure (2-16), Ultimate shear stress versus horizontal shear reinforcement ph	24
Figure (2-17), Typical web reinforcement detail	25
Figure (2-18), Ultimate shear stresses versus effective span-depth ratio led	26
Figure (2-19), Ultimate and diagonal cracking stresses versus ad	27
Figure (2-20), Nominal shear stress versus mid-span deflection	28
Figure (2-21), Beams geometry and dimensions	30
Figure (2-22), Typical arch mechanism of top and bottom loaded deep beams	31
Figure (2-23), Typical detail of bottom loaded beams	32
Figure (2-24), Detailing of typical specimen loaded and supported by columns	33
Figure (2-25), Relative strength (ultimate moment/flexural moment) vs. a/d ratio	38
Figure (2-26), Influence of member depth and aggregate size on shear stress at failure for the	ests
carried out by Shioya 1989, (Ghannoum 1988)	40
Figure (2-27), Normalized ultimate stress and diagonal cracking stress versus overall height	42
Figure (2-28), Ultimate and cracking shear stress for fc'=31.4MPa	43

Figure (2-29), Ultimate and cracking shear stress for fc'=78.5MPa	43
Figure (3-1), Steel forms	49
Figure (3-2), Preparing the tested specimens	49
Figure (3-3), Concrete casted in molds	50
Figure (3-4), Compression test for standard concrete cubes	52
Figure (3-5), Group one specimen dimensions	54
Figure (3-6), Group two specimen dimensions	55
Figure (3-7), Group three specimen dimensions	56
Figure (3-8), Typical reinforcement arrangement for specimens groups	57
Figure (3-9), Custom steel plates and supports	58
Figure (3-10), Typical test setup for small depth beams	59
Figure (3-11), Typical test setup for medium and large depth beams	59
Figure (3-12), Typical LVDT arrangement for specimens	60
Figure (3-13), Typical strain gauge layout for specimen	60
Figure (4-1), B1-400/60 & B2-400/60	65
Figure (4-2), B1-600/60	65
Figure (4-3), B1-900/60	66
Figure (4-4), Crack width propagation for B1-400/60 & B2-400/60	66
Figure (4-5), Crack width propagation for B1-600/60	67
Figure (4-6), Crack width propagation for B1-900/60	67
Figure (4-7), B2-600/90	69
Figure (4-8), B2-900/130	69
Figure (4-9), Crack width propagation for B2-600/90	70
Figure (4-10), Crack width propagation for B2-900/130	70
Figure (4-11), B3-400/80	72
Figure (4-12), B3-600/120	72
Figure (4-13), B3-900/180	73
Figure (4-14), Crack width propagation for B3-400/80	73
Figure (4-15), Crack width propagation for B3-600/120	74
Figure (4-16), Crack width propagation for B3-900/180	74
Figure (4-17), Load deflection curve for B1-400/60 & B2-400/60	76
Figure (4-18), Load deflection curve for B1-600/60	76
Figure (4-19), Load deflection curve for B1-900/60	
Figure (4-20), Load deflection curve for B2-600/90	77