

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار الخدارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠% في درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٥-١٥ To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بالرسالة صفحات لم ترد بالاصل

بعض الوثائــق الأصليــة تالفـه

بينيب لِلْهُ الْجَالِحِيَا لِمُعَالِحِيَامِ

الْمَالَا اللهِ ال

صدق الله العظيم "سورة البقرة: الآية ٣٢"

GENETIC SCREENING FOR SICKLE CELL DISEASE AND GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY IN NEWBORN INFANTS

A Thesis

Submitted to Medical Research Institute
Alexandria University

In Partial Fulfillment for the Requirements of PH.D. Degree in Genetics

By

Ebtesam Mohamed Abdallah

M.B.B.CH.

Master of Genetics

(Alexandria University)

~~~

Medical research Institute

Alexandria University

2002

### **SUPERVISORS**

Prof. Dr. Suzan Roushdy Ismail
Prof. of Human Genetics
Human Genetics Department
Medical Research Institute

Prof. Dr. Mervat Moustafa Hashish
Prof. of Human Genetics
Human Genetics Department
Medical Research Institute

Dr. Mohamed Mohamed Mokhtar
Assistant Prof. of Human Genetics
Human Genetics Department
Medical Research Institute

### Co-worker

Dr. Homam Mohamed Sharshira

Assistant Prof. of Hematology

Department of Hematology

Medical Research Institute

### Acknowledgement

My deepest gratitude and great appreciation to Prof. Dr. Suzan Roushdy Ismail, professor of human Genetics, Human Genetics Department, Medical Research Institute, Alexandria University, for her unlimited and talented efforts to accomplish this work. She gave me so much of her precious time. Without her helpful guidance, kind encouragement, and constructive comments, this work simply could not be completed.

I am greatly indebted to Prof. Dr. Mervat Moustafa Hashish, professor of Human Genetics, Human Genetics Department, Medical Research Institute, Alexandria University, and I would like to express my extreme gratitude, and sincere appreciation for her excellent supervision, useful advice, and valuable cooperation all over the course of the work.

My deep thanks and gratitude are especially expressed to Dr. Mohamed Mohamed Mohamed Mokhtar, Assistant Prof. of Human Genetics, Human Genetics Department, Medical Research Institute, Alexandria University, for his continuous advice, helpful follow up, and valuable assistance throughout the course of the work.

I would like to sincerely acknowledge and thank Dr. Homam Mohamed Sharshira, Assistant Prof. of Hematology, Department of Hematology, Medical Research Institute, Alexandria University, for helping and guiding me during performance of the practical work, and kindly providing the results of the quantitative assay of G-6-PD.

### **ABBREVIATIONS**

2,3-DPG 2,3-Diphosphoglycerate

G6PD Glucose-6-phosphate dehydrogenase

GSH Reduced glutathione

GSSG Oxidized glutathione

Hb Hemoglobin

HbA Normal adult hemoglobin

HbF Fetal hemoglobin

HbS Sickle hemoglobin

HPFH Hereditary persistence of fetal hemoglobin

ICSH International Council for Standardization in Hematology

LCR Locus control region

NADP Nicotinamide-adenine dinucleotide phosphate

NADPH Reduced nicotinamide-adenine dinucleotide phosphate

PCR Polymerase chain reaction

PKU Phenylketonuria

### **CONTENTS**

| Chapter                                      | Page |
|----------------------------------------------|------|
| I. INTRODUCTION:                             | 1    |
| Genetic Screening                            | 3    |
| Normal Human Hemoglobin                      | 9    |
| Hereditary Hemolytic Anemias                 | 15   |
| Sickling Disorders                           | 19   |
| Glucose-6-Phosphate Dehydrogensae Deficiency | 63   |
| II. AIM OF THE WORK:                         | 88   |
| III. SUBJECTS AND METHODS:                   | 89   |
| IV. RESULTS:                                 | 101  |
| V. DISCUSSION:                               | 122  |
| VI. SUMMARY AND CONCLUSIONS:                 | 151  |
| VII. RECOMMENDATIONS:                        | 153  |
| VIII. REFERENCES:                            | 155  |
| ARABIC SUMMARY                               |      |

### List of figures: cont.

- Fig. 13: Distribution of fetal hemoglobin percentage among the screened newborn infants.
- Fig. 14: The detected neonatal globin chain electrophoretic patterns
- Fig. 15: The detected hemoglobin electrophoretic patterns of the family with Hb S.
- Fig. 16: The scanner patterns of the family with Hb S.
- Fig. 17: Pedigree of the family with sickle cell trait.
- Fig. 18: The fluorescent spot test.
- Fig. 19: G6PD variants electrophoretic patterns.
- Fig. 20: Pedigree of a family with G6PD deficiency.
- Fig. 21: Pedigree of a family with G6PD deficiency.
- Fig. 22: Pedigree of a family with G6PD deficiency.

### **List of Tables:**

Table I: Criteria for effective newborn screening program.

Table II: Genetic disorders commonly included in newborn screening.

Table III: G6PD variants characterized at the DNA level.

Table IV: Drugs that should be avoided by persons with G6PD deficiency.

Table V: Some drugs that can be safely administered to G6PD deficient subjects.

Table VI: Distribution of screened newborns according to degree of consanguinity.

Table VII: Frequency of hemoglobin phenotypes among the screened newborn infants.

Table VIII: G6PD deficiency among the screened newborn infants.

Table IX: Clinical and laboratory findings of the G6PD-deficient babies.

# INTRODUCTION

### INTRODUCTION

The hereditary anemias present a major genetic health problem that contributes considerably to childhood mortality and morbidity in many developing countries. They are among the commonest of the genetically determined diseases and comprise a group of conditions of considerable complexity. However, because of the easy accessibility of the red blood cells, more has been learnt about the genetic and molecular basis of anemias than about other inherited human disease. Many of hereditary anemias are rare and are not important as regards public health. However, two groups, the inherited disorders of hemoglobin (hemoglobinopathies) and deficiency of the red cell enzyme glucose-6-phosphate dehydrogenase (G6PD), have achieved an extraordinarily high frequency in the world populations.<sup>[1]</sup>

The hemoglobinopathies and G6PD deficiency are the most common single gene disorders encountered in our region; they are much more common than in many other parts of the world. They represent a major health problem and the chronic illness and complications of these conditions pose considerable burdens on our health resources. [2]

Sickle cell anemia is a chronic and often debilitating disease, which results from homozygosity for a point mutation in the  $\beta$ -globin subunit of the hemoglobin molecule. Hemoglobin S (HbS), the product of this mutation, polymerizes when deoxygenated, thus damaging the red blood cell and causing vaso-occlusive