SOME PHYSIOLOGICAL STUDIES ON INCREASING CANOLA PRODUCTION UNDER SALINITY STRESS

By

HODA SANY ZAKY HASSAN

B.Sc. Agric. Sci. (Int. Agric.), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences Plant Physiology

Department of Agricultural Botany
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

SOME PHYSIOLOGICAL STUDIES ON INCREASING CANOLA PRODUCTION UNDER SALINITY STRESS

Ph.D. Thesis
In
Agricultural Sciences (Plant Physiology)

By

HODA SANY ZAKY HASSAN

B.Sc. Agric. Sci. (Int. Agric.), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Dr. SAID AWAD MOHAMED SHEHATA
Dr. AHMED HUSSEIN HANAFY AHMED
Professor of Plant Physiology, Fac. Agric., Cairo University
Dr. EGLAL MOHAMED ZAKI HARB
Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. MOHAMED R. A. NESIEM

Professor of Plant Physiology, Fac. Agric., Cairo University

Date: 12/10/2017

SUPPERVISION SHEET

SOME PHYSIOLOGICAL STUDIES ON INCREASING CANOLA PRODUCTION UNDER SALINITY STRESS

Ph.D. Thesis
In
Agricultural Sciences (Plant Physiology)

By

HODA SANY ZAKY HASSAN

B.Sc. Agric. Sci. (Int. Agric.), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Plant Physiology), Fac. Agric., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. EGLAL MOHAMED ZAKI HARB Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. MOHAMED RAMADAN ABOUL-ELLA NESIEM Professor of Plant Physiology, Fac. Agric., Cairo University

Dr. DARWISH SALEH DARWISH Professor of Agronomy, Fac. Agric., Cairo University Name of Candidate: Hoda Sany Zaky Hassan Degree:Ph.D.

Title of Thesis: Some Physiological Studies on Increasing Canola

Production Under Salinity Stress

Supervisions: Dr. Eglal Mohamed Zaki Harb

Dr. Mohamed Ramadan Aboul-Ella Nesiem

Dr. Darwish Saleh Darwish.

Department: Agricultural Botany

Branch: Plant Physiology Approval: 12/10/2017

ABSTRACT

The present investigation was conducted to study the effects of humic acid (HA), salicylic acid (SA) and ascorbic acid (AsA) on growth, yield, oil %, fatty acid composition of seed oil and chemical constituents of canola plants grown under three salinity levels (control, 4000 or 8000 ppm). This experiment was carried out in the green house of the Plant Physiology Division, Fac. of Agric., Cairo Univ., Giza, Egypt, during two successive seasons; 2014/2015 and 2015/2016.

The obtained results confirmed the significant negative effects of salinity on canola growth characters including root length and shoot height, root and shoot fresh & dry weight, total plant leaves area as well as yield components comprised of number of siliquae/plant, number of seeds/siliqua, seed yield/plant, oil % and fatty acids percentage in canola oil. Furthermore, salinity resulted in a significant decrease in chlorophyll a &b, N, P and K concentrations in roots and shoots of canola plants. However, data revealed a progressive increase in Na, free amino acids, free proline, total soluble phenols and total sugar concentrations in roots and shoots.

The results indicated the promotive effects of HA (50 or 100 ppm), SA (36 or 72 μ M) and AsA (1.5 or 3 mM) on the growth characters and yield components of canola when compared to the control. Application of HA at 100 ppm resulted in the highest root length and shoot height, root and shoot fresh & dry weight, total plant leaves area as well as yield components including number of siliquae/plant, number of seeds/siliqua, seed yield / plant and oil % as compared to the other salinity tolerance inducers or control plants. The application of 50 or 100 ppm HA or 72 μ M SA to canola plants grown 4000 ppm salinity resulted in an obvious increase in oleic acid % and reduced euricic % in canola seed oil. Also, increased chlorophyll a & b, N, P, K, free amino acids, free proline, total soluble phenols and total sugar concentrations in canola roots and shoots were achieved by using salinity tolerance inducers.

It was found that canola plants grown under 4000 ppm and treated with HA at 100 ppm followed by HA at 50 ppm were able to approach their optimal productivity as compared to the control (non-salinized and untreated). Thus, these results strongly suggest that HA especially at 100 ppm application to canola plants grown under salinity stress (4000 ppm) has an effective role for potential growth regulation, improving plant resistance to salinity stress and its productivity.

Keywords: Canola, salinity, humic acid, ascorbic acid, salicylic acid, growth, yield and oil.

ACKNOWLEDGEMENT

First, I would like express my praise to great Allah for the uncountable blessings.

I would like to express my deepest gratitude and profound thanks to Prof. Dr. Eglal Zaki Harb, Professor of Plant Physiology, Fac. Agric., Cairo University for her support and assistance throughout this work. I consider myself as very lucky to have Prof. Dr. Mohamed Ramadan, Professor of Plant Physiology, Fac. Agric., Cairo University as one of my supervisors. He always offered me continuous advice, attention and guidance. I would also like to show my gratefulness to Prof. Dr. Abd-Alrahman Moursy Ghallab, late Professor of Plant Physiology, Fac. Agric., Cairo University for his kind encouragement at the beginning of this work.

Extended gratitude also goes to **Prof. Dr. Darwish S.Darwish** Professor of Agronomy, Fac. Agric., Cairo University for his sincere and generous contribution especially in the practical part of this study.

Sincere appreciation to **Dr. Said A. F. Hamoda**, Head Researcher in Cotton Research Institute, Agricultural Research Centre for his keen and valuable contribution and assistance in this research.

My gratitude also goes to all my colleagues for their continuous advice and guidance as well as members of Plant Physiology Division, Faculty of Agriculture, Cairo University for being so helpful and cooperative.

My best regards and thanks to my parents, husband and sisters for their sincere support, compassion, patience and motivation, whom without this work wouldn't have been accomplished in its present form.

LIST OF ABBREVIATIONS

ABA Abscisic Acid

ACC Aminocyclopropane Carboxilic Acid

ACS Aminocyclopropane Carboxylic Acid Synthase

AKT1 serine/threonine protein kinase enzyme

APX Ascorbate Peroxidase

ASA Ascorbic Acid

ATP Adenosine Triphosphate

ATPase Adenosine Triphosphatase

CAT Catalase

Chl Chlorophyll

Cu/ZnSOD Copper and Zinc-containing Superoxide Dismutase

Cys Cysteine

DAS Days After Sowing

DHAR Dehydroascorbate Reductase

DNase I Deoxyribonuclease I

dS m⁻¹ deci-Siemens / m = 1 m moh.cm⁻¹ \cong 640 ppm

Fe-SOD Iron Superoxide Dismutase

Fv/Fm variable/ maximum chlorophyll fluorescence

GA Gibberellic Acid

GDH Glutamate Dehydrogenase

GK Glutamyl Kinase

GLC Gas –Liquid Chromatography

Gly I Glyoxalase I

Gly II Glyoxalase II

GPX Glutathione Peroxidase

GR Glutathione Reductase

GS Glutamine Synthetase

GSH Reduced Glutathione

GSSG Glutathione Disulphide

GST Glutathione S- Transferase

HA Humic Acid

HA7 Biostimulant Extracted from Humic Acid

HS Humic Substances

IAA Indole Acetic Acid

IUPAC International Union of Pure and Applied Chemistry

LDL Low Density Lipoprotein

MDA Malondialdehyde

MDHAR Monodehydroascorbate Reductase

MW Molecular Weight

NADP Nicotinamide Adenine Dinucleotide Phosphate

NR Nitrate Reductase

NUE Nitrogen Use Efficiency

P5CS 1-Pyrroline-5-Carboxylate Synthase

PAL Phenylalanine Ammonia-Lyase

PDH Proline Dehydrogenase

PEG Polyethylene Glycol

PEP Phophoenolpyruvate

PGR Plant Growth Regulators

POX Peroxidase

PPO Polyphenol Oxidase

PROX Proline Oxidase

PS I Photosystem I

PS II Photosystem II

ROS Reactive Oxygen Species

SA Salicylic Acid

SOD Superoxide Dismutase

SPAD Soil Plant Analysis Development

WUE Water Use Efficiency

CONTENTS

Title	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
MATERIALS AND METHODS	51
1. Plant material	51
2. Preparation of pots and cultivation	51
3. Chemical analyses	54
4. Analysis of fatty acids	56
5. Statistical analysis	57
RESULTS AND DISCUSSION	59
a. Growth Characters	59
1. Root length and shoot height	59
2. Root and shoot fresh weight	64
3. Root and shoot dry weight	68
4. Total plant leaves area	73
b. Yield and yield components	78
1- Number of siliqua /plant	78
2- Number of seeds / siliqua	79
3- 1000-seed weight	81
4-Seed yield/plant	82
5- Oil percentage	87
6- Fatty acids percentage in canola oil	89
c-Plant chemical constituents	90
i- Organic constituents	90
1- Chlorophyll a and b concentrations	90

2- Total soluble phenols concentration	96
3-Total free amino acids concentration	99
4- Free proline concentration	100
5- Total sugar concentration	105
ii- Inorganic composition	109
1- N, P and K concentrations	109
2- Sodium concentration	119
SUMMARY	131
REFERENCES	137
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1	Mechanical and chemical analysis of soil	52
2	Humic acid composition analysis	53
3	Effect of salinity and amendment treatments on root length (cm) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	60
4	Effect of salinity and amendment treatments on shoot height (cm) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	61
5	Effect of salinity and amendment treatments on root fresh weight (g) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	66
6	Effect of salinity and amendment treatments on shoot fresh weight (g) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	67
7	Effect of salinity and amendment treatments on root dry weight (g) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	70
8	Effect of salinity and amendment treatments on shoot dry weight (g) of canola plants at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	71
9	Effect of salinity and amendment treatments on total canola plant leaves area (cm²) at 45 and 75 DAS during 2014-2015 and 2015-2016 seasons	75
10	Effect of salinity and amendment treatments on number of siliqua/plant of canola plants during 2014-2015 and 2015-2016 seasons	79
11	Effect of salinity and amendment treatments on number of seeds/siliqua of canola plants during 2014-2015 and 2015-2016 seasons	80

12	Effect of salinity and amendment treatments on 1000-seed weight (g) of canola plants during 2014-2015 and 2015-2016 seasons	82
13	Effect of salinity and amendment treatments on seed yield/plant (g) of canola plants in 2014-2015 and 2015-2016 seasons	83
14	Effect of salinity and amendment treatments on oil % of canola seeds during 2015-2016	88
15	The effect of salinity and amendment treatments on % of fatty acids composition in canola oil seed during 2015-2016	91
16	The effect of salinity and amendment treatments on chlorophyll a concentration (mg/g f.wt.) in canola leaves at 45 and 75 DAS (combined analysis for both studied seasons)	92
17	The effect of salinity and amendment treatments on chlorophyll b concentration (mg/g f.wt.) in canola leaves at 45 and 75 DAS (combined analysis for both studied seasons)	93
18	The effect of salinity and amendment treatments on total chlorophyll concentration (mg/g f.wt.) in canola leaves at 45 and 75 DAS (combined analysis for both studied seasons)	94
19	The effect of salinity and amendment treatments on total soluble phenols concentrations (mg/g f.wt.) in roots and shoots of canola plants at 45 and 75 DAS (combined analysis for both studied seasons)	97
20	The effect of salinity and amendment treatments on total free amino acids concentrations (mg/g d.wt.) in roots and shoots of canola plants at 45 and 75 DAS (combined analysis for both studied seasons)	101
21	The effect of salinity and amendment treatments on proline concentrations (mg/g f.wt.) in roots and shoots of canola plants at 45 and 75 DAS (combined analysis for both studied seasons)	102

22	The effect of salinity and amendment treatments on total sugar concentrations (mg/g d.wt.) in canola roots and shoots at 45 and 75 DAS (combined analysis for both studied seasons)	107
23	The effect of salinity and amendment treatments on N concentrations (mg/g d.wt.) in canola roots and shoots at 45 and 75 DAS (combined analysis for both studied seasons)	111
24	The effect of salinity and amendment treatments on P concentrations (mg/g d.wt.) in canola roots and shoots at 45 and 75 DAS (combined analysis for both studied seasons)	112
25	The effect of salinity and amendment treatments on K concentrations (mg/g d.wt.) in canola roots and shoots at 45 and 75 DAS (combined analysis for both studied seasons)	113
26	The effect of salinity and amendment treatments on Na concentrations (mg/g d.wt.) in canola roots and shoots at 45 and 75 DAS (combined analysis for both studied seasons)	120

INTRODUCTION

Canola was developed in the 1970s by Canadian plant scientists. It refers to the "double-low" variety of the rapeseed plant (*Brassica napus*) from which the oil should contain less than 2% erucic acid in its fatty acids profile and the solid component shall contain less than 30 µmole/g of glucosinolates. Globally, canola is now the third most important source for vegeTable oil for human consumption after palm and soybean oils, ranked first and second, respectively. Canola oilseed production is second only to soybean oilseed production.

Canola oil is known for its outstanding nutritional content and is considered one of the healthiest vegeTable oils available to consumers. Compared to all other vegeTable oils in the market, canola oil has the lowest levels of saturated fatty acids reaching about 7 % (the lowest among common cooking and salad vegeTable oils), 18.6% linoleic acid, 9.1% linolenic acid and 63.2% mono-unsaturated fatty acids. Interestingly, canola oil is high in monounsaturated fat which may reduce the risk of coronary heart disease by lowering bad LDL cholesterol in the blood and helping control blood glucose. Canola oil is a beneficial source of tocopherols (vitamin E, an antioxidant) and vitamin k as well as phytosterols that help reduce cholesterol. Lastly, like all vegeTable oils canola is cholesterol free. The health benefits of canola oil have enhanced the adoption of canola as a healthy dietary source across the globe. Thus more demand for canola production over the world.

The high smoking point of canola oil along with the previously mentioned benefits makes it suiTable for culinary purposes such as frying, baking, marinating and salad oil. It also showed success in other industries such as cosmetics (shampoo and soap), printing ink and lubricants. Biofuel feedstock is one of the newer uses for canola. It's the feedstock of choice for Canadian-produced biodiesel because of its exceptional cold weather performance. In addition, canola meal, the part left over after the seeds are crushed and the oil extracted, is high-protein meal that is an excellent animal feed for cattle, poultry, swine and fish.

The productivity of crops is not increasing in parallel with the food demand. The lower productivity in most of the cases is attributed to various abiotic stresses. Curtailing crop losses due to various environmental stresses is a major area of concern to cope with the increasing food requirements (Shanker and Venkateswarlu, 2011).

Rising soil salinity has been a major problem in the soils of Egypt in recent decades. Plant growth and development is hampered due to salinity stress through lowering osmotic potential of soil solution (water stress), nutritional imbalance, specific ion effect (salt stress) or a combination of these factors. During the development of salt stress within a plant, all the major processes such as photosynthesis, protein synthesis, as well as metabolic processes, in particular nitrate uptake, translocation, and assimilation is impaired. Salt stress induces severe metabolic disfunctions by boosting reactive oxygen species formation and accumulation, lipid peroxidation, oxidative stress, damage in DNA, inactivation of enzymes and senescence, with the loss of chlorophylls