SOLAR DRYING OF CORN FOR SEEDS PRODUCTION

By

GEHAD ABD-ALFATTAH ABD-ALAZIZ MORSY

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2011

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences
(On Farm Machinery and Power Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

SOLAR DRYING OF CORN FOR SEEDS PRODUCTION

By

GEHAD ABD-ALFATTAH ABD-ALAZIZ MORSY

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2011

This thesis for M.Sc. degree has been approved by:
Or. Samir Ahmed Tayel
Prof. Emeritus Agricultural Engineering, Faculty of Agricultural
Eng., Al-Azhar University
Or. Hany Idrees Khalil
Prof. of Food Engineering, Faculty of Agriculture, Ain Shams
University
Or. Mostafa Fahim Mohammed Abdel-Salam
Associate Prof. Agricultural Engineering, Faculty of Agriculture, Ain
Shams University
Or. Mubarak Mohammed Mostafa
Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture,
Ain Shams University

Date of Examination: 19 / 10 / 2017

SOLAR DRYING OF CORN FOR SEEDS PRODUCTION

By

GEHAD ABD-ALFATTAH ABD-ALAZIZ MORSY

B.Sc. Agric. Sc. (Agricultural Engineering), Ain Shams University, 2011.

Under the supervision of:

Dr. Mubarak Mohammed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principle Supervisor)

Dr. Mostafa Fahim Mohammed Abdel-Salam

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Magda Mohammed Amin Mosa

Senior researcher of Agriculture Engineering, Agriculture Engineering Research Institute. Agricultural Research Center.

ABSTRACT

Gehad Abd-alfattah Abd-alaziz Morsy: Solar Drying of Corn for Seeds Production. Unpublished M.Sc. thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2017.

This study was carried out to compare the effect of two different drying methods on drying corn. The experiments were carried out in rice mechanization center at Meet El- Dyba, Kafr El- Sheikh Governorate, Egypt during summer 2016. The experimental measurements included Solar radiation in and out the dryer, ambient air temperature and its relative humidity, air dryer temperature and its relative humidity, grain bulk temperature, moisture content, drying rate, thermal efficiency and quality tests of dried grain. Ear and shelled corn was dried by using solar energy for heating air inside a greenhouse and compared with natural sun drying method. Results indicated that the times required to reduce the moisture content from 31.73%(d.b) to 14.07%(d.b) were 26, 24 and 28 hours for solar drying at air velocities of 0.5, 1.0 and 1.5 m/s respectively as compared to 46 hours for natural sun drying method for complete ear corn. The corresponding drying times for shelled corn were 12, 10 and 14 hours to reduce the moisture content from an initial level of 27.23% to 19.97% (d.b.) as ear corn, and 8, 6 and 10 hours to reduce the moisture content from 19.97% to final level of 14.12%(d.b.) as shelled corn at air velocities of 0.5, 1.0 and 1.5m/s respectively as compared to 38 hours for natural sun drying method. The results of quality tests that included standard germination test, vigor test and tetrazolium test for two drying methods for ear and shelled corn recorded high percentages for all treatments except solar dried ear corn at air velocities (0.5 and 1.0 m/s). The average air temperature inside the solar dryer at air velocities of 0.5 and 1.0 m/s reached to 43.5 and 42.5 °C respectively. High temperatures killed the germ so the quality tests reduced. Germination percentage of dried ear corn by natural sun drying and solar drying at air velocities (0.5,

1.0 and 1.5 m/s) was 97, 79, 81 and 89% respectively. The corresponding values for dried shelled corn were 95, 97, 93 and 98%. The vigor test of dried ear corn recorded 90, 34, 45, and 66% for natural sun drying and solar drying at air velocities of 0.5, 1.0 and 1.5 m/s respectively. The corresponding values for dried shelled corn were 82, 86, 96, and 97% respectively. The observed high level of quality tests for shelled corn could be attributed to the reduction of drying air temperature during drying period. Hourly costs of ear corn drying were 0.95, 0.88, 1.00 and 1.03 L.E/kg for solar drying at air velocities 0.5, 1.0, 1.5m/s and natural sun drying respectively. The corresponding values for shelled corn were 0.74, 0.58, 0.89 and 0.98 L.E/ kg. **Main object of this study:** The main object of this study is to study the ability of utilizing greenhouse solar dryers for drying corn in order to obtain the best quality of dried grains for using it as seeds with the least drying time, and comparing with the natural sun drying method. The experiments were carried out under two different operating conditions of two different drying methods (solar drying method using greenhouse solar dryer -natural sun drying method), two different plant conditions (ear corn- shelled corn) and three different air velocities (0.5, 1.0 and 1.5 m/s).

Key words: Drying process, Solar energy, Sun drying, solar drying, Seeds production, Corn drying

ACKNOWLEDGEMENT

Thanks to Allah for his gracious kindness in all the endeavors the author has taken up in her life.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Mubarak Mohammed Mostafa**, Prof. Emer. of Agric. Eng., Fac. Agric., Ain Shams Univ. for suggesting the problem of study and for his kind supervision throughout this work. The author is grateful for his valuable discussions, which helped to finalize this work.

The author wishes to express her sincere gratitude and appreciation to **Dr. Mostafa Fahim Mohammed Abdel-Salam**, Associate Prof. of Agric. Eng., Fac. Agric., Ain Shams Univ., for kind supervision, continuous encouragement and valuable advices throughout this work.

The author wishes to express her sincere gratitude and appreciation to **Dr. Magda Mohammed Amin Mosa,** Senior researcher, Agric. Eng. Res. Inst, Agricultural Research Center., for supervision, problem suggestion, continuous encouragement, valuable advices throughout this work, kind help and for reviewing the manuscript.

Special thanks to all staff members of the Agric. Eng. Dep., Fac. of Agric., Ain Shams Univ., for their kind help.

Special thanks to all staff members of processing and handling of Agric. Crops, Agric Dep., Eng. Res. Inst, and all staff members of rice mechanization center for their kind help. Thanks to all staff members of the Agric. Eng. Res. Inst., Agricultural Research Center, for their kind help. Also, I wish to thank **Prof. Dr. Mohamed El- Kholy**, Prof. and head of division of processing and handling of Agric. Crops, Agric. Eng. Res. Inst, Agricultural Research Center. for his valuable advice and encouragement.

Finally, my full respect and deep thanks to my husband **Captain Ashraf El-Sheikh** and my family for their tender care, help, patience, loving encouragement and moral support.

To Soul of **Prof. Dr. Mahmoud Ahmed El-Nono** and My Dear Sister **Ph. Doaa Abdalfattah Abdalaziz**.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
1. INTRODUCTION	1
2. REVIEW OF LITERATURES	5
2.1. Nutritional Value and Benefits of corn	5
2.1.1. Nutrtional value and healthy benefits	5
2.1.2. Economical importance	5
2.2. Importance and principles of drying process	6
2.3. Classification of drying methods	7
2.3.1. Natural (sun) drying	7
2.3.2. Mechanical (artificial) drying	9
2.3.3. Solar drying	10
2.3.3.1. Classification of solar dryers	11
2.3.3.2. Application of solar dryers in drying agricultural	
crops and its effects on crop quality	12
2.3.3.3. Corn drying	16
2.3.3.4. Factors affecting the performance of solar drying	
process	18
3. MATERIALS AND METHODS	23
3.1. Materials	23
3.1.1. Test crop	23
3.1.2. Drying methods	23
3.1.2.1. Solar drying method	24
3.1.2.2. Natural sun drying method	24
3.2. Methods	26
3.2.1. Test Procedure and Measurements	26
3.2.1.1. Test Procedure	26
3.2.1.1.1. Experimental Treatments	26
3.2.1.1.2. Methodology	26

3.2.2. Measurements and Calculations	28
3.2.2.1. Solar Radiation	29
3.2.2.2. Temperature Measurements	29
3.2.2.3. Air Velocity	29
3.2.2.4. Moisture Content	29
3.2.2.5. Drying Rate	30
3.2.2.6. Thermal performance analysis	30
3.2.2.7. Quality tests of dried grain	33
3.2.2.7.1. Standard germination test	33
3.2.2.7.2. Vigor test	34
3.2.2.7.3. Tetrazolium test (TZ test)	35
3.2.2.8. Cost analysis	35
4. RESULTS AND DISCUSSION	39
4.1. Solar radiation	39
4.1.1. Solar drying	39
4.1.2. Natural sun drying	41
4.2. Air temperature	41
4.2.1. Solar drying	41
4.2.2. Natural sun drying	42
4.3. Air relative humidity	46
4.3.1. Solar drying	46
4.3.2. Natural sun drying	46
4.4. Grain bulk temperature	49
4.4.1. Solar drying	50
4.4.2. Natural sun drying	50
4.5. Grain moisture content	53
4.5.1. Solar drying	53
4.5.2. Natural sun drying	53
4.6. Drying efficiency	57
4.6.1. Solar drying	57
4.6.2. Natural sun drying	58
4.7. Ouality evaluation tests of dried grain	59

4.8. Cost analysis	60
5. SUMMARY	61
6. REFERENCES	67
7. APPENDIXES	77
ARABIC SUMMARY	

LIST OF TABLES

Fable		Page
No.		1 age
1	Physical properties of corn	23
2	The parameters which are affecting on costs	
	evaluation of drying	37
18	Standard germination test, vigor test and	
	tetrazolium test for dried grain	59
19	The hourly costs, (L.E/Kg) for natural sun drying	
	and solar drying methods	60

LIST OF FIGURES

Figure		Page
No.		1 agc
1	Egypt as part of solar belt	1
2	Schematic of solar greenhouse dryer	25
3	The experimental treatments used for the	
	experimental work	27
4	Grain preparation before testing (cut longitudinal)	36
5	Test evaluation and examples of non.viable seeds	36
6	Hourly solar radiation flux inside and outside the	
	dryer during drying of ear corn	40
7	Hourly solar radiation flux inside and outside the	
	dryer during drying of shelled corn	40
8	Air temperature inside and outside the dryer during	
	drying period of ear corn during drying period	43
9	Air temperature inside and outside the dryer drying	
	period of shelled corn	44
10	Ambient air temperature and ear bulk temperature	
	during drying of ear corn under natural sun drying	
	method	45
11	Ambient air temperature and grain bulk temperature	
	during drying of shelled corn under natural sun	
	drying method	45
12	Air relative humidity inside and outside the solar	
	dryer during the period of ear corn drying	47
13	Air relative humidity inside and outside the solar	
	dryer during the period of shelled corn drying	48
14	Ambient air relative humidity under natural sun	
	drying method during drying of ear corn	49
15	Ambient air relative humidity under natural sun	
	drying method during drying of shelled corn	49

Figure		Dogo
No.		Page
16	Effect of air velocity on air dryer temperature and	
	ear bulk temperature during the drying period	51
17	Effect of air velocity on air dryer temperature and	
	grain bulk temperature during the drying period	52
18	Reduction in grain moisture content %(d.b) during	
	ear corn solar drying	54
19	Reduction in grain moisture content %(d.b) during	
	shelled corn solar drying	55
20	Drying time of ear and shelled corn during solar	
	and natural sun drying methods	56
21	Reduction in grain moisture content %(d.b) during	
	ear and shelled corn natural sun drying	56
22	Daily drying efficiency of natural sun drying and	
	solar drying methods during the experimental work.	58

LIST OF PLATES

Plate		Dogo
No.		Page
1	The three identical dryers using in this study	24
2	Natural sun drying	26
3	Ears corn under solar drying	28
4	Shelled corn under solar drying	28

LIST OF ABBREVIATIONS

Prof. : Professor

Emer. : Emeritus

Agric. : Agriculture, Agricultural

Eng. : Engineering

Fac. : Faculty

Univ. : University

AOAC : Association of official analytical chemists

Mc : Moisture content

Mt : Moisture content (Kg water/ Kg dry matter) at time t

 \mathbf{M}_{t+dt} : Moisture content (Kg water/ Kg dry matter) at time t +dt

dt : Time difference, hr

Q : Solar energy available inside the solar dryer

R : Solar radiation flux incident inside the solar dryers, W/m²

A_d : Net surface area of the drying chamber, m²

 $\mathbf{Q}_{\mathbf{C}}$: Useful heat gain by the dryer during the drying process

m_a : Air flow rate, Kg/s

CP : Specific heat of air, J/Kg.°C

Tai : Air temperature inside the dryer, °C

T_{ao} : Ambient air temperature outside the dryer, °C

V : Air velocity, m/s

A : Cross section area of the window of the dryer, m²

P : Air density, Kg/m³