

NUMERICAL INVESTIGATION ON EFFECT OF FIRE FIGHTING ON SMOKE MOVEMENT IN TUNNELS.

By

Ramy Mahmoud Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

NUMERICAL INVESTIGATION ON EFFECT OF FIRE FIGHTING ON SMOKE MOVEMENT IN TUNNELS.

By Ramy Mahmoud Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
MECHANICAL POWER ENGINEERING

Under the Supervision of

Prof. Dr.Mahmoud Ahmed Fouad

Dr. Taher Mohamed Halawa

Professor of Mechanical Power Department Faculty of Engineering, Cairo University Lecturer, Mechanical Power Department

Faculty of Engineering, Cairo University

NUMERICAL INVESTIGATION ON EFFECT OF FIRE FIGHTING ON SMOKE MOVEMENT IN TUNNELS.

By Ramy Mahmoud Ragab Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Power Engineering

Approved by the Examining Committee

Prof. Dr. Mahmoud Ahmed Fouad , Thesis Main Advisor

Prof. Dr. Samy Mourad, Internal Examiner

Prof. Dr. Mohammed Faik Abd Rabbo Professor of Mechanical Power Department Faculty of Engineering, Shoubra, Banha University , External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer's Name:** Ramy Mahmoud Ragab Mahmoud

Date of Birth: 10/06/1984 **Nationality:** Egyption

E-mail: Ramymahmoud37@yahoo.com

Phone: (+2)01119673261

Address: 5 abdmenam ryad St.Madkor,alharam,Giza,Egypt

Registration Date: 01/10/2015 **Awarding Date:**/2017 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Dr. Mahmoud Ahmed Fouad Dr. Taher Mohamed Halawa

Examiners:

Prof. Dr. Mahmoud Ahmed Fouad (Thesis main advisor)

Prof. Dr. Samy Mourad(Internal examiner)

Porf. Dr Mohammed Faik Abd Rabbo (External

examiner)

Professor of Mechanical Power Department

Faculty of Engineering, Shoubra, Banha University

Title of Thesis:

NUMERICAL INVESTIGATION ON EFFECT OF FIRE FIGHTING ON SMOKE MOVEMENT IN TUNNELS.

Key Words:

Smoke Management; Vehicular Tunnels; Ventilation; Visibility; FDS **Summary:**

Smoke is the most deadly factor in vehicular tunnels fire since smoke spreads in heading harmonize with passenger's evacuation way. It reduces visibility and can cause fatalities by suffocation.

This research presents a numerical study of the effect of extracting the smoke by different system of ventilation on smoke spread inside the vehicular tunnel, like (water mist system with transverse ventilation and longitudinal system with jet fans and solid curtain with transverse system and semi transverse system)

Also tenable conditions were checked at human level. FDS 6.5.1 ver. was used to predict the various parameters of temperature, and visibility and Co concentration. Eight cases were conducted; Cases 1, 2, 3 and 7 were done to compare between four different ventilation systems at 30 MW. Case 4, 5, 6 and 8 were done to compare between three different ventilation systems at 100 MW.

Acknowledgment

With the name of **GOD**, I started this research hoping that it accelerates the wheel of progress in this field.

I would like to express my sincere appreciation and infinite thanks to **Professor Dr. Mahmoud Ahmed Fouad**, professor of mechanical power- faculty of engineering—Cairo University, who gave me a great scientific support and guidance to make a progress in my research. Besides, having severe admiration of his gigantic experience and unlimited co-operation and efforts of helping me to introduce this research in the best way.

I would also like to acknowledge the help rendered to me by, **Dr. Taher Mohamed halawa** as advisor, he provided me valuable suggestions and guidance during my study.

In addition, I cannot express; in words; the support of my parents especially my mother, my family. Their insight and wisdom have been invaluable and it's research for my kids (Raseel&Yaseen).

To all my team and my friends: thank you very much for what you have done for me. I thank you all for the companionship that made this journey much easier. In fact, I do not need to list your names because I am sure that you know who you are.

Table of content

ACKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	Vi
LIST OF FIGURES	Vii
NOMENCLATURE	Xiv
Greek Letters	Xv
Superscripts and Subscripts	Xvi
Abbreviations	Xvi
ABSTRACT	Xix
CHAPTER 1: INTRODUCTION	1
1.1. General	1
1.2. Hazard of smoke	3
1.2.1 Toxicity	3
1.2.2. High temperature	3
1.2.3. Reduce visibility	4
1.2.4. Back-layering	4
1.3. Objective of smoke management	5
1.4. Plug-Holing	5
1.5. Hazard Of Carbon Monoxide (CO)	6
1.6. Hazard Of Carbon Dioxide (CO2)	7
1.7. High Temperature	8
1.8. Fire Heat Release Rate	8
1.9. Critical Velocity For Smoke Control	9
1.10. Piston Effect At Tunnel	10

1.11. Smoke Stratification	10
1.12. Objective Of Tunnel Ventilation	11
1.13. Tunnel Ventilation	12
1.14. TYPES OF VENTILATION SYSTEM	13
1.14.1 Longitudinal Ventilation	13
1.14.2. Transverse Ventilation	14
1.14.3 Semi-transverse Ventilation	14
1.15. Jet Fans Ventilation	15
1.16 Water Mist Systems	16
1.17 Solid Curtain	17
CHAPTER 2: LITERATURE REVIEW	19
2.1. INTRODUCTION	19
2.2. PREVIOUS WORK	19
2.3. RELATION BETWEEN PREVIOUS WORK AND PRESENT WORK	35
CHAPTER 3: GOVERNING EQUATIONS	36
3.1. DESCRIPTION OF FDS	36
3.1.1. Hydrodynamic Model	36
3.1.2. Combustion Model	36
3.1.3. Radiation Transport	37
3.2. GOVERNING EQUATIONS	37
3.2.1 Mass and Species Transport	37
3.2.2. Momentum Transport	38
3.2.3. Energy Transport	38
3.3. EQUATION OF STATE	39
3.4. LARGE EDDY SIMULATION (LES)	40

3.5. COMBUSTION (MIXTURE FRACTION MODEL)	41
3.6. RADIATION (RADIATION TRANSPORT EQUATION)	42
3.7. THE HEAT CONDUCTION EQUATION FOR A SOLID	44
3.8. RADIATION HEAT TRANSFER TO SOLIDS	44
3.9. CONVECTIVE HEAT TRANSFER TO SOLIDS	45
CHAPTER 4: VALIDATION AND GRID SENSITIVITY ANALYSIS	46
4.1. VALIDATION OF FDS	46
4.1.1. Tunnel Description	46
4.1.2. fire source	46
4.1.3 Ceiling Temperature Measurements	47
4.1.4. FDS Simulations	48
4.1.4. FDS Simulation Results	48
4.2. COMPUTATIONAL DOMAIN AND GRID SENSITIVITY ANALYSIS	49
4.2.1. Tunnel Description	50
4.2.2. fire scenarios	50
4.2.3. Simulation Results	52
4.2.4. Simulation cases of the present study	53
CHAPTER 5: RESULTS AND DISCUSSIONS	54
5.1. RESULTS OF CASE 1	54
5.2. RESULTS OF CASE 2	59
5.3. RESULTS OF CASE 3	65
5.4. RESULTS OF CASE 4	72
5.5. RESULTS OF CASE 5	76
5.6. RESULTS OF CASE 6	80
5.7. RESULTS OF CASE 7	87

5.8.	RESULTS OF CASE 8	94
CHA WOI	PTER6: CONCLUSIONS AND SUGGESTED FUTURE	102
6.1.	CONCUUSIONS	102
6.2.	SUGGESTED FUTURE WORK	102
REF	ERENCES	104
APPI	ENDIX: APPENDIX	106

List of Tables

Table 1,1 :	Some of road tunnel fires during the last 30 years	2
Table 1,2:	Tenability criteria given by NFPA 502	4
Table 1,3:	Exposure time and effect of CO	7
Table 1,4:	Occupational Exposure Limits for Carbon Dioxide	8
Table 1,5 :	Fire Data for Typical Vehicles	9
Table 1,6 :	Tunnel Air Quality Guideline (PIARC)	15
Table 4,1:	The conditions of the full-scale experiments	48
Table 4,2:	Fire scenarios in numerical simulation	50
Table 4,3 :	Cases carried out for sensitivity analyses	51
Table 4,4:	Simulation cases of present study	53

List of Figures

Figure 1.1:	Katschberg Road Tunnel, Kärnten, Austria	1
Figure 1.2 :	Back-Layering of smoke	4
Figure 1.3:	Smoke management concept	5
Figure 1.4 :	Illustration of Plug holing phenomenon	6
Figure 1.5 :	Smoke progress in case of a fire in a tunnel (natural ventilation)	9
Figure 1.6 :	Vvent < Vc (insufficient mechanical ventilation	9
Figure 1.7 :	Vvent = Vc (sufficient mechanical ventilation)	10
Figure 1.8 :	Vvent > Vc (sufficient mechanical ventilation)	10
Figure 1.9 :	Emission standards for new heavy-duty diesel engines, relative to Euro I	13
Figure 1.10:	Longitudinal & Transverse & Semi transverse ventilation	14
Figure 1.11:	Jet fans used for ventilating the Mrazovka tunnel, Prague	15
Figure 1.12:	Jet fan theory of operation	16
Figure 1.13:	Test in tunnel by water mist system in Germany	17
Figure 1.14:	Solid curtain in ceiling of the tunnel	18
Figure 2.1 :	Layout of Vehicular Tunnel	20
Figure 2.2:	Tunnel cross-section	21
Figure 2.3:	Illustration of experimental arrangement for plan of the model tunnel	22
Figure 2.4 :	The scale tunnel model, inclination angle adjustment	23
Figure 2.5:	A partial view of the full-scale tunnel fire experimental setup	25

Figure 2.6:	Structural diagram of the multi-branch tunnel	20
Figure 2.7 :	The convective HRR and the rate of smoke particle generation as well as pictures of the full-scale model tunnel fire experiment	27
Figure 2.8 :	Sketch of two types of compartmentalization in tunnel	28
Figure 2.9 :	Influence of ventilation velocity on the fire growth rate	29
Figure 2.10:	Nanjing Xi'anmen Tunnel with roof opening	31
Figure 2.11:	Critical velocity with the tunnel slope	32
Figure 2.12:	Spray shapes of nozzles with 5 L/ min. (a) 60° , (b) 90° (c) 120°	33
Figure 2.13:	Setup of Water Distribution test	34
Figure 4.1 :	Physical model for simulations Geometry of the simulation tunnel configuration (not in scale)	46
Figure 4.2:	A partial view of the full-scale tunnel fire experimental setup	47
Figure 4.3:	Typical HRR as a function of time from the ethanol pool fires for four pans based on the measured mass loss rate	47
Figure 4.4 :	Comparison of temperature variation between simulation and experimental results	49
Figure 4.5 :	Comparison of HHR variation between simulation and experimental results	49
Figure 4.6:	Schematic diagram of arrangement of fire source, vents and water mist nozzles	50
Figure 4.7 :	The temperature at 0.05 m under the ceiling	51
Figure 4.8:	Comparison for Numerical temperature distributions at 4.95 m above the tunnel floor	52
Figure 4.9 :	Comparison for Numerical visibility distributions at 2.0 m above the floor level	52

Figure 4.10:	Comparison for Numerical CO concentration distributions at 2.0 m above the floor level	53
Figure 5.1 :	Schematic diagram of the arrangement of fire source, vents and water mist nozzles in case 1	54
Figure 5.2:	Smoke spread process in case 1 at 60 s, 180 s, 240 s, and 300 s	55
Figure 5.3 :	Temperature contours distributions along the tunnel in case 1 at side View (at 60 s, 180 s, 240 s, and 300 s)	56
Figure 5.4 :	Numerical temperature distribution at 4.95 m above the tunnel floor in case 1	56
Figure 5.5 :	Numerical visibility distributions in case 1 at human level at 2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	57
Figure 5.6 :	Visibility distributions along the tunnel in case 1 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	58
Figure 5.7 :	Numerical visibility distributions at 2.0 m above the floor level in case 1	58
Figure 5.8:	Numerical CO concentration distributions at 2.0 m above the floor level in case 1	59
Figure 5.9:	Schematic diagram of the arrangement of fire source, jet fans system ventilation in case 2	59
Figure 5.10:	Smoke spread process in Case 2 at 60 s, 120 s, 180 s, 240 s, and 300 s	60
Figure 5.11:	Numerical temperature distributions along the tunnel in case 2 at human level at 2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	60
Figure 5.12:	Temperature contours distributions along the tunnel in case 2 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	61
Figure 5.13:	Comparison between temperature distributions at 0.05 m under the ceiling in Case 1 & Case 2	61
Figure 5.14:	Numerical visibility distributions in case 2 at human level at 2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	62
Figure 5.15:	Visibility contours distributions along the tunnel in case 2 at side view (at 60 s. 120 s. 180 s. 240 s. and 300 s.)	63

Figure 5.16:	Comparison between visibility distributions at 2.0 m above the floor level in Case 1 & Case 2	63
Figure 5.17:	Numerical CO concentration distributions at 2.0 m above the floor level in case 2	64
Figure 5.18:	Comparison between CO concentration distributions at 2.0 m above the floor level in Case 1 & Case 2	65
Figure 5.19:	Schematic diagram of the arrangement of fire source, vents and Solid Curtains in case 3	65
Figure 5.20:	Smoke spread process in Case 3 at (60 s, 120 s, 180 s, 240 s, and 300 s)	66
Figure 5.21:	Comparison between Smoke spread distributions at (300 s) in Case 1 & Case 2& Case 3 @30MW	67
Figure 5.22:	Numerical temperature distributions along the tunnel in case 3 at human level at 2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	68
Figure 5.23:	Temperature contours distributions along the tunnel in case 3 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	68
Figure 5.24:	Comparison between temperature distributions at human level at 2 m (at 300 s) in Case 1 & Case 2& Case 3 @30MW	69
Figure 5.25:	Numerical visibility distributions along the tunnel in case 3 at human level (at 60 s, 120 s, 180 s, 240 s, and 300 s)	70
Figure 5.26:	Visibility contours distributions along the tunnel in case 3 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	70
Figure 5.27:	Comparison between visibility distributions at human level at 2 m (at 300 s) in Case 1 & Case 2& Case 3 @30 MW	71
Figure 5.28:	Numerical CO concentration distributions at 2.0 m above the floor level in case 3	72
Figure 5.29:	Schematic diagram of the arrangement of fire source, vents and water mist nozzles in case 4	72
Figure 5.30:	Smoke spread process in Case 4 at (60 s, 120 s, 180 s, 240 s, and 300 s)	73
Figure 5.31:	Numerical temperature distributions along the tunnel in case 4 at human level at 2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	74

Figure 5.32:	Temperature contours distributions along the tunnel in case 4 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	74
Figure 5.33:	Visibility slices at the center section of the tunnel at human level at 2 m above the tunnel floor (at 60 s, 120 s, 180 s, 240 s, and 300 s)	75
Figure 5.34:	Numerical CO concentration distributions at 2.0 m above the floor level in case 4.	76
Figure 5.35:	Schematic diagram of the arrangement of fire source, jet fans system ventilation in case 5	76
Figure 5.36:	Smoke spread process in Case 5 at 60 s, 120 s, 180 s, 240 s, and 300 s	77
Figure 5.37:	Numerical temperature distributions along the tunnel in case 5 at human level (at 60 s, 120 s, 180 s, 240 s, and 300 s)	78
Figure 5.38:	Temperature contours distributions along the tunnel in case 5 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	78
Figure 5.39:	Numerical visibility distributions along the tunnel in case 5 at human level (at 60 s, 120 s, 180 s, 240 s, and 300 s)	79
Figure 5.40:	Visibility contours distributions along the tunnel in case 5 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	79
Figure 5.41:	Numerical CO concentration distributions at 2.0 m above the floor level in case 5	80
Figure 5.42:	Schematic diagram of the arrangement of fire source, vents and Solid Curtain system in case 6	80
Figure 5.43:	Smoke spread process in Case 6 at (60 s, 120 s, 180 s, 240 s, and $300 \ s)\dots$	81
Figure 5.44:	Comparison between Smoke spread distributions (at 300 s) in Case 4 & Case 5 & Case 6 @100MW	82
Figure 5.45:	Numerical temperature distributions along the tunnel in case 6 at human level@2 m (at 60 s, 120 s, 180 s, 240 s, and 300 s)	83
Figure 5.46:	Temperature contours distributions along the tunnel in case 6 at side view (at 60 s, 120 s, 180 s, 240 s, and 300 s)	83
Figure 5.47:	Comparison between temperature distributions at human level at 2 m (at 300 s) in Case 4 & Case 5 & Case 6 @100 MW	84