ACRYLAMIDE IN SOME EGYPTIAN FOODS: LEVELS, FORMATION, BIOCHEMICAL EFFECTS AND PREVENTION

 $\mathbf{B}\mathbf{v}$

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

THESIS

Submitted in Partial Fulfillment Of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
CairoUniversity
EGYPT

APPROVAL SHEET

ACRYLAMIDE IN SOME EGYPTIAN FOODS: LEVELS, FORMATION, BIOCHEMICAL EFFECTS AND PREVENTION

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

APPROVAL COMMITTEE

Dr. HOSNY MOHAMED SHAFIK ABD ELSALAM Professor of Biochemistry, Fac. Agric., Menia University	•
Dr. EMAM ABDEL MOBDEA ABDEL RAHIMProfessor of Biochemistry, Fac. Agric., Cairo University	
Dr. MOHYE ELDEIN ALI OSMAN Professor of Biochemistry, Fac. Agric., Cairo University	

Date: 11 / 8 /2015

SUPERVISION SHEET

ACRYLAMIDE IN SOME EGYPTIAN FOODS: LEVELS, FORMATION, BIOCHEMICAL EFFECTS AND PREVENTION

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

RANDA SAAD HASAN MOHAMED

B.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Cairo Univ., 2010

SUPERVISION COMMITTEE

Dr. MOHYE ELDEIN ALI OSMAN
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. RAMY MOHAMED ROMEILAH Associate Professor of Biochemistry, Fac. Agric., Cairo University

Dr. MOHAMED HASSANIN ELGAMMAL Senior Researcher of Pollution, RCFF, Agric. Res. Centre, Giza, Egypt

Name of Candidate: Randa Saad Hasan Mohamed Degree: M.Sc.

Title of Thesis: Acrylamide in Some Egyptian Foods: Levels, Formation,

Biochemical Effects and Prevention

Supervisors: Dr. Mohye El Dein Ali Osman

Dr. Ramy Mohamed Romeilah Dr. Mohamed Hassanin El Gammal

Department: Agricultural Biochemistry Approval: 11/8/2015

ABSTRACT

The objective of the present study was to estimate acrylamide levels in some different food samples obtained from Egyptian local market and home made samples, also the levels of acrylamide formation during different processing conditions, and effects of pre-frying treatments on acrylamide reduction in some Egyptian foods, and to investigate the biological effects of acrylamide. Results showed that in market samples, the highest mean acrylamide level value was found in dark coffee (5181.61 µg/kg). The mean of acrylamide concentration of all potato market samples was 25.97 µg/kg. The highest mean levels in prepared meals was found in fried onion (309.35 µg/kg), while in homemade samples, the highest mean value of acrylamide content was in fried noodles at 120°C/6 min (310.75 µg/kg). The effect of different temperatures and/or times on acrylamide formation in fried rice and fried potatoes results were recorded. The highest acrylamide value for fried rice was 3066.38 µg/kg at 180°C/20 min. The effects of different pre-frying treatments on reduction of acrylamide formation in fried rice at 180°C for 10 min were studied. Soaking rice in acetic acid (1%) for 20 min caused the highest significant (p \leq 0.05) in reduction acrylamide formation (94.65%) followed by soaking rice in citric acid (1%) for 20 min (93.7%), while soaking rice in water or different solutions caused significant reduction in acrylamide formation between (89.1 to 94.65%). Results indecated that rats administrated acrylamide in drinking water between 1-6 ppm or fed on 30% fried rice (3066 ppm) led to a significant decrease in body weight gain, hemoglobin, red blood cells, white blood cells, hematocrit, platelet, T3, T4 and HDL cholesterol; however TSH, liver and kidney function and lipid profile were significantly increased .These biomarkers were improvemed when rats fed on 5% grape leaves in combination with fried rice compared with rats fed fried rice only. These may be due to contain extract of antioxidant phenols and flavinoads as chemical analysis grape leaves on proved. These results were documented by histopathological investigations of the liver, kidney, brain, pancreas, lymph nodes and thyroid gland.

Key words: Acrylamide, Potato, Rice, Reduction, Soaking, Frying temperature, Grape leaves, Drinking water, Biochemical changes,

Histopathological analysis.

DEDICATION

I dedicate this thesis firstly to **Allah** for giving me the courage and the determination, as well as guidance in conducting this research study, despite all difficulties and then to **my lovely Parents** whom support me in everything who helped me to finish my master thesis.

ACKNOWLEDGEMENT

I wish to extend my utmost gratitude to my respected supervisors, **Dr. Mohye El- Dein Ali Osman** Professor of Biochemistry Department, Faculty of Agriculture, Cairo University. His invaluable comments and suggestions enhanced the quality of this thesis. He was very tolerant. His patience and support helped me overcome many crisis situations and finish this thesis. It has been honour for me to be his M.Sc. student.

This thesis could not have been done without the support and patience of the **Dr. Ramy Mohamed Romeilah** Assistant Professor of Biochemistry Department, Faculty of Agriculture, Cairo University. He encouraged and guided me throughout the different steps and stages of this thesis.

Special thanks to **Dr. Mohamed Hassanin El-Gammal** Head of Organic Pollutants Laboratory, Regional Centre for Food and Feed, Agriculture Research Centre, Giza. Thanks for his valuable time and continuous help and most of all patience throughout the entire process, your optimistic attitude and encouragement, and understanding.

I Sincere thanks to **Dr. Gehan Gamil Ahmed Shehab**, Head Research in Pathology Department, Animal Health Institute, Doki, for performing histopathological examinations and interpretations.

My sincere thanks are also due to **Dr. Gehan M. El-Moghazy**, Head Regional Centre for Food and Feed for her support and providing all the possibilities and colleagues in the Department of Agriculture Biochemistry, Faculty of Agriculture, Cairo University and the Regional Center for Food and Feed-ARC and Egypt.

LIST OF ABBREVIATIONS

NO.	Abbreviation	
1	α	Alpha
2	\mathbf{A}	Absorbance
3	AAMA	Acrylamide mercapturic acid
4	Ab c.w.	Monospecific immobilized Antibody
5	ABTS	2,2-azino-bis-3-ethylbenzothiazoline-6-
		sulphonic acid
6	AChE	Acetylcholinesterase
7	ADP	Adenosine-5-diphosphate
8	$\mathbf{A}\mathbf{g}$	Native antigen
9	ALP	Alkaline phosphatase
10	ALT/GPT	Alanine aminotransferase
11	ANN	Artificial neural network
12	AOPP	Advanced oxidation protein product
13	AP-1	Transcription activator-1
14	4-AP	4-Aminophenazone
15	3-APA	3-aminopropionamide
16		Aspartate aminotransferase
17	ATSDR	Agency for Toxic Substances and Disease
		Registry
18	AUC	Area under the curve
19	β	Beta
20	BHT	Butylated hydroxytoluene
21	BMD	Benchmark dose
22	02	95% lower confidence limit on the BMD0.5
23	Btn	Biotinylated
24	b.w.	Body weight
25	CHE	Cholesterol esterase
26	CHOD	Cholesterol oxidase
27	Cig.	Cigarette
28	Cmm	Cubic millimeter
29	CNS	Central nervous system
30	CO_2	Carbon dioxide
31	CPF	Carica papaya fruit
32	Сур	Cytochrome
33	D	Day

Conti	nued.	
34	DA	Dopamine
35	DAP	Dihydroxyacetone phosphate
36	DNA	Deoxyribonucleic acid
37	DPPH	1,1-diphenyl-2-picrylhydrazyl
38	DTEAC	Trolox equivalent antioxidant capacity
39	EC	European Commission
40	EDTA	Ethylene diamine tetra acetic acid
41	EDM	Egyptian Diagnostic Media
42	EFSA	European Food Safety Authority
43	ELCR	Excess lifetime cancer risk
44	Enz	Enzyme
45	EPA	Environmental Protection Agency
46	ESCN	Embryonic stem cells
47	EU	Eugenol
48	FFQ	Food frequency questionnaire
49	FRAP	Ferric reducing ability power
50	GAMA	Glycidamide mercapturic acid
51	GPO	Glycerol phosphate dehydrogenase
52	GK	Glycerol kinase
53	G3P	Glycerol-3-phosphate
54	GPx	Glutathione peroxidase
55	GR	Glutathione reductase
56	GST	Glutathione S-transferase
57	h	Hour
58	H and E stain	Hematoxylin and eosin stain
59	Hb	Hemoglobin
60	HCT	Haematocrit
61	HDL-C	High Density Lipoprotein
62	HEC	Human equivalent concentration
63	HED	Human equivalent dose
64	H_2O_2	Hydrogen peroxide
65	HP-5ms	5%-phenylmethylpolysiloxane
66	HRP	Horseradish peroxidase
67	HSDB	Hazardous Substance Data Bank
68	5-HT	Serotonin
69 70	IARC	International Agency for Research on Cancer
70	IE	Isoeugenol