ROLE OF ASCITIC FLUID COMPLEMENT 3 IN SPONTANEOUS BACTERIAL PERITONITIS

Thesis

Submitted For partial fulfillment of Master degree in internal medicine

By

Ebtisam Ahmed Mohamed

(MB. B. Ch)

Supervised by

Dr. Emad Mohamed Elmotasm

Professor of Internal Medicine and Gastroenterology

Faculty of medicine- Cairo University

Dr. Ahmed Amin

Ass, Professor of Internal Medicine and Gastroenterology
Faculty of Medicine - Cairo University

Dr. Heba Sharaf El Din

Professor of clinical & chemical pathology

Faculty of medicine- Cairo University

Faculty of Medicine
Cairo University

Acknowledgment

I would like to take this opportunity to first and foremost thank Allah for being my strength and guide in writing this thesis. Without Him, I would not have had the wisdom or the physical ability to do so.

It is a pleasure to thank the many people who made this thesis possible.

I would like to express my sincere gratitude to **Professor Emad Elmoatasm**, Professor of internal medicine, Cairo University for the continuous support of my research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my study.

It is difficult to overstate my gratitude to **Dr Amed Amin**, assistant professor of internal medicine, Cairo University, With his enthusiasm and his inspiration. Throughout my thesis-writing period, he provided encouragement, sound advice, good teaching, good company and good ideas. Indeed, without his guidance, I would not be able to put the topic together.

My deeply sincere thanks also goes to **professor Heba** Sharaf Eldin, professor of clinical & chemical pathology, Cairo University, for her encouragement, guidance and insightful comments.

Last but not least, I would like to thank my parents for their unconditional support throughout my degree. I wish to thank my family, my colleagues and all my friends for providing a loving environment for me.

Abstract

Ascites is the most common complication in patients with decompensated cirrhosis. Patients with cirrhosis and ascites show higher susceptibility to bacterial infections mainly because of the inadequate defense mechanisms. The most frequent and most severe one being spontaneous bacterial peritonitis (SBP). Prevalence of spontaneous bacterial peritonitis in cirrhotic patients with ascites is as high as 18%, with 40–70% associated mortality. Spontaneous bacterial peritonitis is probably related to several impaired defense mechanisms, such as depressed reticuloendothelial system, phagocytic activity, leukocyte dysfunction, reduced serum complement, and low bactericidal activity of ascitic fluid. Ascitic fluid complement 3 (C3) concentration and opsonic activities are important protective factors against SBP. The C3 component of complement tends to be reduced in cirrhosis .Patients with reduced ascitic fluid C3 concentration and reduced opsonic activities have been shown to be predisposed to SBP.

In our study, we evaluated the role of ascitic fluid complement 3 (C3) in SBP. This was an analytic case control study on 100 patients which have liver cirrhosis, ascites at the age group of 40 to 75 years old They were 65 males and 35 females. Patients were divided into 2 groups:

Group A: 50 patients with cirrhotic ascites complicated by spontaneous bacterial peritonitis(ascitic fluid neutrophilic count>250 cells/mm³).

#Group B: 50 patients with cirrhotic ascites not complicated by spontaneous bacterial peritonitis. Breif clinical assessment was done and CBC, PT, PC, Total protein &albumin, AST, ALT, FBS, PPBS, urea&creatinine, LDH were measured at the Serum. An ascitic fluid sample for C3, ascitic fluid culture, PMNLs, LDH and Total proteins & albumin was taken. Our results showed that: There is a statistically significant difference in the level of ascitic C3 between the two groups where ascitic C3 is lower in group A than group B with P value < 0.001. We concluded that the role of ascitic fluid C3 in the local defense against bacterial infection of ascitic fluid in cirrhotic patients. Ascitic fluid C3 is significantly reduced in cirrhotic patients with SBP. Prompt antibiotic therapy can be considered in cirrhotic patients with low ascitic fluid C3 level as a prophylactic measure against SBP. Also, ascitic fluid culture by the conventional method is significant but of low sensitivity, ascitic PMNLs was highly significant in diagnosis of SBP in cirrhotic patients.

Keywords:

Ascitic fluid complement 3, liver cirrhosis, Ascites, spontaneous bacterial peritonitis

Contents

	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
Introduction	1
Aim of the Work	2
Review of Literature	
Chapter (1): Chapter one; Ascites	3
Chapter (2): Chapter two; Spontaneous	32
Bacterial Peritonitis	
Chapter (3): Chapter three; The complement	54
system	
Patients and Methods	87
Results	95
Discussion	112
Summary	119
Recommendations	121
References	122
Arabic Summary	

List of Abbreviations

Ab	Antibody
ADH	Anti-diuretic hormone
A.F	Ascitic Fluid
AFB	Acid-Fast Bacilli
AFIs	Ascitic Fluid Infections
Ag	Antigen
ALP	Alkaline Phosphatase
ALT	Alanine Aminotransferase
AP	Alternative Pathway
APC	Antigen Presenting Cells
AST	Aspartate Aminotransferase
BA	Bacterascites
ВТ	Bacterial Translocation
Вр	Binding protein
C3	Complement 3
CAH	Chronic active hepatitis
CBC	Complete blood count
CNNA	Culture Negative Neutrocytic Ascites
СР	Classical Pathway
COPD	Chronic obstructive pulmonary disease
CoPV	Cobra venom factor
СТ	Computed Tomography
DAF	Decay-accelerating factor
dl	Deciliter
DNA	Deoxyribonucliec acid
EDTA	Ethylene diamine tetra acitic acid
FBS	Fasting blood sugar
FHF	Fulminant hepatic failure
GALT	Gut-Associated Lymphoid Tissue
GFR	Glomerular filtration rate
GGT	Gamma-glutamyl transpeptidase

HBV	Hepatitis B virus
HCC	Hepato cellular carcinoma
HCV	Hepatitis C virus
HIV	Human Immunodeficiency Virus
HRF	Homologus restriction factor
HRP	Horseradish peroxidase
lg	Immunoglobulin
IL	Interleukin
IV	Intravenous
L	Litter
LDH	Lactate Dehydrogenase
LP	Lectin Pathway
M cells	Macrophage cell
MAC	Membrane Attack Complex
MASP	Mannan-Binding Lectin associated Serine Protease
MBL	Mannan-Binding Lectin
MC	Mixed Cryoglobulinaemia
mg	Milligram
MLN	Mesentric Lymph Nodes
MNB	Monomicrobial non Neutrocytic Bacterascites
NeF	Nephritic factor
NO	Nitric Oxide
NSAIDs	Non steroidal anti inflammatory drugs
P	Properdin
PAMP	Pathogen-Associated Molecular Pattern
PBC	Primary-biliary cirrhosis
PC	Prothrombin concentration
PD	Peritoneal dialysis
PMNL	Polymorphonuclear Leucocytes
PPBS	Post prandial blood sugar
PRR	Pattern Recognition Receptor
PT	Prothrombin Time
PVS	Peritoneovenous shunt

SAAG	Serum Albumin-Ascitic fluid albumin Gradient
SBEM	Spontaneous bacterial empyema
SBP	Spontaneous Bacterial Peritonitis
SLE	Systemic lupus erythrematosis
SRBC	Sheep Red Blood Cell
ТВ	tuberculosis
TCC	Terminal complement complex
TIPS	Transjugular Intrahepatic Portosystemic Shunt
TLC	Total leucocytic count
TLR	Toll like receptor
TNF	Tumor necrosis factor
TP	Terminal Pathway
WBC	White blood cells

List of Tables

Tables No.	Table	Page
1	Tests of Ascitic Fluid	18
2	Classification of ascites according to the level of	20
	serum- ascites albumin gradient (SAAG)	
3	Options for empiric antibiotic therapy of SBP	51
4	The three main physiologic activities of the	54
	complement system	
5	the table summarizes the activation of the classical,	57
	lectin and alternative pathways	
6	The demographic data of the studied groups regarding	95
	age and sex:	
7	Comparison between both groups according to CBC	96
	findings	
8	Comparison between both groups according to	98
	bleeding profile & serum proteins	
9	Comparison between both groups regarding liver	100
	enzymes	
10	Comparison between both groups according to blood	100
	glucose level	
11	Comparison between both groups regarding kidney	101
	functions	
12	Comparison between both groups according to serum	101
	LDH level	
13	Comparison between both groups regarding Ascitic	103
	Fluid Bacteriology	

14	Comparison between the studied groups as regard ascitic fluid culture studied groups	104
15	Comparison between both groups according to Ascitic Fluid Complement 3	105
16	Comparison between both groups according to Ascitic Fluid total protein	106
17	Comparison between both groups according to Ascitic Fluid albumin	107
18	Comparison between both groups according to Ascitic Fluid LDH	108
19	Comparison of ascitic C3 regarding sex	109
20	Correlation of C3 with different parameters within SBP only	109
21	Validity of ascitic fluid Complement 3 (C3) in diagnosis of SBP among studied groups	111

List of Figures

Fig. No.	Figures	Page
1	Comparison between absolute lymphocytic count between two groups	97
2	Comparison between prothrombin concentration between two groups	99
3	Comparison between prothrombin concentration between two groups	99
4	Comparison between the levels of serum LDH between two groups.	102
5	Comparison between the level of ascitic fluid PMNL count between two groups	103
6	Comparison between the studied groups as regard ascitic fluid culture	104
7	Comparison between the studied groups as regard ascitic fluid C3	105
8	Comparison between the studied groups as regard ascitic fluid total protein	106
9	Comparison between the studied groups as regard ascitic fluid albumin	107
10	Comparison between the studied groups as regard ascitic fluid LDH	108
11	ROC curve analysis to explore the ability of C3 to differentiate SBP	110

INTRODUCTION

B

Cirrhosis represents a late stage of progressive hepatic fibrosis characterized by distortion of the hepatic architecture and the formation of regenerative nodules. It is generally considered to be irreversible in its advanced stages, at which point the only treatment option may be liver transplantation (**Asrani SK et al, 2013**).

Ascites (fluid retention in the abdominal cavity) is the most common complication of cirrhosis. It is associated with a poor quality of life, increased risk of infection, and a poor long-term outcome, this may be visible as increase in abdominal girth (**Dan et al, 2012**)

Spontaneous bacterial peritonitis (SBP) is defined as an acute bacterial infection of ascitic fluid despite the absence of an obvious source for the infection (Lata Jet al., 2009).

The presence of SBP, which almost always occurs in patients with cirrhosis and ascites, is suspected by signs and symptoms, such as fever, abdominal pain, or altered mental status or hypotension, though some patients are asymptomatic and are detected when they undergo paracentesis after being admitted to the hospital for another reason. A low clinical suspicion for SBP does not obviate the need for testing (Chinnock et al, 2013).

Spontaneous bacterial peritonitis is probably related to several impaired defense mechanisms, such as depressed

reticuloendothelial system phagocytic activity, leukocyte dysfunction, reduced serum complement, and low bactericidal activity of ascitic fluid (Yildirim B, Sari R, Sezgin N, 2002). Ascitic fluid complement 3 (C3) concentration and opsonic activities are important protective factors against SBP. The C3 component of complement tends to be reduced in cirrhosis (Sherlock S, Dooley J, 2002) and patients with reduced ascitic fluid C3 concentration and reduced opsonic activities have been shown to be predisposed to SBP (Garcia Tsao G, 2005).

This study was designed with the aim to compare the level of ascitic fluid C3 concentration in cirrhotic patients with and without spontaneous bacterial peritonitis (SBP), to determine its possible protective role against this infection.

AIM OF THE WORK

To compare the level of ascitic fluid C3 concentration in cirrhotic patients with and without spontaneous bacterial peritonitis to determine its possible protective role against acquiring infection.

ASCITES

Définition:

Ascites "Ascites" Dictionary.com: Oakland, 2010).

Is a gastroenterological term for an accumulation of fluid in the peritoneal cavity. These medical condition is also known as peritoneal cavity fluid, peritoneal fluid excess, hydroperitoneum or more archaically as abdominal dropsy.

Eighty percent of cases of ascites are caused by hepatic diseases, in the remaining 20%, cancer, inflammation, pancreatic, renal or cardiac disease can be found (**Hwangbo et al., 2007**).

Etiology:

The cause of ascites may be classified pathophysiolo-gically into ascites with normal peritoneum and ascites with diseased peritoneum (**Hwangbo et al., 2007**).

A) Causes of Ascites with Normal Peritoneum:

1) Portal hypertension:

- Cirrhosis.
- Hepatic fibrosis.
- Congestive heart failure.
- Budd-Chiari syndrome.
- Portal vein occlusion.
- Constrictive pericarditis.