

Impact of Maternal Body Mass Index (BMI) On Pregnancy Outcome in A Non-Diabetic Mother & Its Effect on Cord Blood Glucose & Insulin

Thesis

Submitted in fulfillment of Master Degree in Obstetrics and Gynecology

By

Noha Hassan Mohammed Zaki

M.B.,B. CH., Faculty of Medicine Cairo University

Supervised By:

Dr.Abdel-Maguid Ramzy

Professor of Obstetrics & Gynecology Faculty of Medicine Cairo University

Dr.Iman Mostafa El-Zahaby

Dr. Sherif Mofeed Ekladious

Lecturer of Obstetrics & Gynecology Faculty of Medicine Cairo University Lecturer of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Faculty of Medicine
Cairo University
2015

ACKNOWLEDGMENT

First and foremost, thanks are to ALLAH THE WHOLE MIGHTY to whom I relate any success in achieving any work in my life.

I would like to express my deepest thanks to <u>Prof. Dr. Abdel</u>
<u>Maguid Ramzy</u>, Professor of Obstetrics and Gynecology, Faculty of
Medicine, Cairo University, for his help, continuous support and unlimited
assistance. Certainly his help was more than words could ever express.

Special thanks are to <u>Dr. Iman Mostafa Al Zahabi</u>, lecturer of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, for dedicating so much of her precious time and efforts and for honest and constant guidance to complete this work. Words of thanks are so little for her continuous supervision, valuable guidance, generous encouragement and great help in the preparation and completing this work.

Many thanks and great appreciation to <u>Dr. Sherif Mofeed</u>
<u>Ekladious</u>, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, for his honest and great appreciation for preparation and completing this work which wouldn't 've been completed without his decent and unlimited support. I do owe him a lot.

Finally, deepest appreciation and tender sensations to each member of my family. My passionate mother, beloved sisters and brother and cute niece. And above all, my only everlasting love, to my husband to whom I owe all the happiness in my life, and to the sweetest piece of my heart, my precious lovely daughter. Nothing can express my feelings towards every single member of you.

Abstract

The amount of weight gained during pregnancy can affect the immediate and future health of a woman and her infant. Maternal obesity and underweight both are on the rise with negative impact on pregnancy and birth outcomes. And since normal pregnancy is characterized by insulin resistance, and BMI had the largest effect correlated with HOMA-IR, this paper aims at studying the impact of maternal BMI on outcome of pregnancy in a non-diabetic mother and its effect on cord blood glucose and insulin.

We concluded that increased maternal BMI is associated with increased incidence of CS delivery, macrosomic babies, fetal hyperinsulinaemia and insulin resistance. While decreased maternal BMI is more likely to be associated with increased incidence of SGA and NICU admission.

Key Words:

Maternal obesity- underweight- BMI- macrosomia- SGA-hyperinsulinaemia- HOMA IR- Apgar score.

Contents

Title	Page No.
List of tables	i
List of figures	ii
Abbreviations	iii
Introduction	1
Aim of work	4
Review of literature	
Chapter I: Physiology of Weight Gain during Pregnancy	
Chapter II: Maternal Obesity	
Chapter III: Maternal Underweight	
Materials and methods	70
Results	78
Discussion	94
Conclusion and recommendations	100
References	103
Arabic Summary	

List of Tables:

Table No.	Title	Page No.
Tab.1:	Average components of weight gain in pregnancy and	7
	cumulative gain at the end of each trimester (kg)	
Tab.2:	Recommended dietary allowances (Revised in 2005)	10
Tab.3:	HOMA-IR calculation	15
Tab.4:	BMI classification	17
Tab.5:	Recommended pregnancy weight gain based on BMI	18
Tab.6:	Apgar Scoring Components	21
Tab.7:	Percentage of each BMI group in our study	80
Tab.8:	Mode of delivery among different BMI groups of our study	87
Tab.9:	Apgar score mean results at 1 and 5 min. among different	88
	BMI groups of our study	
Tab.10:	Mean BW in gm of different BMI groups of our study	89
Tab.11:	Mean maternal and cord blood glucose among different	90
	BMI groups of our study	
Tab.12:	Mean maternal and cord insulin in μIU/ml among different	91
	BMI groups of our study	
Tab.13:	Mean maternal and cord HOMA-IR among different BMI	92
	groups of our study	

List of Abbreviations:

AOB All Our Babies Study

aOR Adjusted Odds Ratio

BMI Body Mass Index

CI Confidence Interval

DRD4 Dopamine Receptor D4

FFA Free Fatty Acids

FGR Fetal Growth Restriction

FPG Fasting Plasma Glucose

FPI Fasting Plasma Insulin

FTO gene Fat Mass And Obesity Associated Gene

GDM Gestational Diabetes Mellitus

GLUT Glucose Transporter

GWG Gestational Weight Gain

HAPO The International Multicenter Hyperglycemia And Adverse

Pregnancy Outcomes

HCPs Health Care Providers

HDL High-Density Lipoprotein

HOMA-IR Homeostasis Model Assessment-Estimated Insulin Resistance

IDA Iron Deficiency Anemia

IGFBPs IGF-Binding Proteins

IGFs Insulin-Like Growth Factors

IOM Institute Of Medicine

Kg Kilogram

KT Knowledge Translation

LA Linoleic Acid

lbs Pounds

LBW Low Birth Weight

LDL Low-Density Lipoproteins

LGA Large-For-Gestational Age

LH Literacy For Health

m Meter

MC4R gene Melano-Cortin-4 Receptor Gene

MOMTech Maternal Obesity Management Using Mobile Technology

NICU Neonatal Intensive Care Unit

NO Endothelium-Derived Nitric Oxide

Nr3c1 Nuclear Receptor Peroxisome Proliferator-Activated Receptor

Alpha (Ppara)

NRP The Neonatal Resuscitation Program

NW Normal Weight Group

OB Obese Group

OGTT Oral Glucose Tolerance Test

OR Odds Ratio

OW Overweight Group

PE Pre-Eclampsia

PIH Pregnancy-Induced Hypertension

PIGF Placental Growth Factor

PPARy2 Peroxisome Proliferator-Activated Receptor Y2

PROM Premature Rupture Of Membranes

RCOG The Royal College Of Obstetricians And Gynecologists

RDS Respiratory Distress Syndrome

Abbreviations

SEM Standard Error Of The Mean

sFlt-1 Soluble Fms-Like Tyrosine Kinase-1

SGA Small-For-Gestational Age

SLC2A3 Solute Carrier Family 2 (Facilitated Glucose Transporter) Member 3

T2DM Type 2 Diabetes Mellitus

TG Triglycerides

UK United Kingdom

VBAC Vaginal Birth After Caesarean Section

VEGF Vascular Endothelial Growth Factor

WHO World Health Organization

WHR Waist To Hip Ratio

List of Figures:

Figure	Title	Page
No.		No.
Fig.1:	Composition of weight gained during pregnancy.	8
Fig.2:	A schematic representation of maternal-fetal nutrient and hormone	13
	exchange across the placenta in pregnancy.	
Fig.3:	Summary of the potential lifetime benefits of early intervention in the	67
	mother and/ or infant for preventing later adverse outcomes of obesity	
Fig.4:	Percentage of each BMI group in our study	80
Fig.5:	Mode of delivery vs BMI groups of our study	87
Fig.6:	Apgar score mean results at 1 and 5 min. vs BMI groups of our study	88
Fig.7:	Mean BW in gm vs BMI groups of our study.	89
Fig.8:	Mean maternal and cord blood glucose vs BMI groups of our study	90
Fig.9:	Mean maternal and cord insulin in μIU/ml vs BMI groups of our study.	91
Fig.10:	Mean maternal and cord HOMA-IR vs BMI groups of our study.	92

Weight gain during pregnancy:

Weight gain, one of the hallmarks of pregnancy, relates extensively to the well-being of the fetus and infant. Therefore, Women should set pregnancy weight gain goals based on their pre-pregnancy BMI (*Cunningham et al., 2001*). Healthy pregnant women with a good nutritional status certainly improves the outcome of baby (*Lumbanraja*^a et al., 2013).

The amount of weight gained during pregnancy can affect the immediate and future health of a woman and her infant. (*The American College for Obstetricians and Gynecologists*, 2013).

Women with normal body mass index before pregnancy promised a better outcome for pregnancy itself, also for the outcome of baby birth. Pregnant women with inadequate maternal weight gain were often result on low baby birth weight and increase perinatal morbidity and mortality. On the other hands, over increase of maternal weight gain also resulted on poor fetal outcome and affect the methods of delivery later (*Lumbanraja*^a et al., 2013).

Primary maternal BMI and her weight gain during pregnancy are of utmost importance, indeed, low BMI is a risk factor for LBW (Allen, 1994). Prior investigators have shown the association between the ratio of weight to height prior to the pregnancy and weight gain during pregnancy with fetal growth and development (Mickey et al., 1997) have explained a reverse correlation between BMI and simultaneous preterm delivery among different ethnic groups (Copper et al., 1995) have reported a lesser tendency among obese females for weight gain during pregnancy (Jenabi et al., 2011).

Maternal obesity:

Is defined as a body mass index (BMI) $> 30 \text{ kg/m}^2$. It affects more that 30% of the antenatal population in the UK and is the most common co-morbidity of pregnancy (*Denison et al.*, 2013).

Worldwide there has been a dramatic increase in the prevalence of overweight (body mass index [BMI, calculated as weight (kg)/[height (m)]²] 25 and higher) and obesity (BMI 30 and higher) in women of child-bearing age. (*Ovesen et al.*, 2011).

Maternal obesity and excessive gestational weight gain (GWG) are on the rise with negative impact on pregnancy and birth outcomes (Soltani et al., 2015).

Obese women have higher risk of complications during pregnancy and delivery. Furthermore, their obesity may have adversely affected the health of their offspring (*Ovesen et al.*, 2011).

Insulin resistance:

Normal pregnancy is characterized by insulin resistance which is greatest in the third trimester. Insulin resistance increases with increasing body mass index, waist circumference and in particular waist-hip ratio (*Aronne et al.*, 2002).

Exaggeration of the insulin resistance normally seen in pregnancy is associated with gestational diabetes mellitus and gestational hypertension (*Seely et al.*, 2003). The Homeostasis model assessment-estimated insulin resistance (HOMA-IR), developed by *Matthews et al. in 1985* has been widely used for the estimation of insulin resistance in research.

Maternal underweight:

After the global alert for overweight and obesity, an opposite extreme on the same spectrum of malnutrition status has drawn attention in both developing and developed countries due to different reasons (*Triunfo et al.*, 2015).

Malnutrition in the mother has direct effects on the body size of the offspring, and may contribute to the health risks in childhood, persisting throughout life (*Triunfo et al.*, 2015).

In these pregnancies, an increased risk of fetal loss, preterm birth, anemia, infections, fetal growth restriction (FGR), birth defects, low BW, brain damage, admission to neonatal intensive care unit, and a longer duration of hospital stay, signs of the metabolic syndrome accompanied the catch-up in body weight and central adiposity have been recognized (*John et al.*, 2012).

Aim Of Work:

Studying the Impact of maternal body mass index (BMI) on pregnancy outcome in a non-diabetic mother & its effect on cord blood glucose & insulin.

Chapter I

Physiology Of Weight Gain During Pregnancy

Physiology of pregnancy:

Pregnancy in the human female is an unusual state in which virtually all maternal systems are dramatically altered to permit the sustenance and growth of the intrauterine conceptus. In very real ways, the maternal organism is life-adapted (*Barclay*, 2009).

Many system-specific changes occur in the course of pregnancy. A number of well-described adaptive physiologic states that produce changes in human systems similar to those seen in pregnancy (*Andersen et al.*, 1981).

Among the physiologic states that produce adaptive changes similar to those seen in pregnancy are metabolic changes and weight gain.

Metabolic Changes:

Pregnancy is characterized by increased metabolic activity as measured by the basal metabolic rate. The researchers hypothesized that this increase in metabolic activity primarily represented increased fetal and placental metabolic work, with only a small fraction being attributable to increased maternal metabolic activity (*Heini et al., 1992*). At term, the products of gestation were estimated to be responsible for approximately 13% of the 20% increase in total metabolic activity. More modern studies using oxygen consumption measures and indirect calorimetry estimate the energy output of an average-sized pregnant woman at 36 weeks' gestation to be approximately 98 W (8443 \pm 243 kJ/day). This compares with an energy output of approximately 81 W (6971 \pm 172 kJ/day) for a similar-sized, non-pregnant, non-lactating woman. Although the more recent studies used different methodologies, they all support the results of the earlier work (*Barclay, 2009*).