

EFFICACY AND SAFETY OF ATORVASTATIN IN SEPTIC PATIENTS

Thesis

Submitted for Partial Fulfillment of M.D. In General Intensive Care

By

Dr. Hanaa Mohamed Abd Allha Ahmed El Gendy M.B.B.Ch., M.Sc., M.D. of Anesthesia

Under Supervision of

Prof. Dr. Alaa El din Abd Elwahab Koraa

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Prof.Dr. Gamal El din Mohammad Ahmed Elewa

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Mohamed Mohamed Nabil El Shafei

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University (2012)

Table No.	Title	Page
1	Diagnostic Criteria For Sepsis.	7
2	Mediators of Sepsis	9
3	Differential diagnosis for sepsis	37
4	Mortality in Emergency Department Sepsis (MEDS) Score.	38
5	Pharmacokinetic properties of the statins	53
6	Comparison between the two studied groups as regard demographic data	79
7	Comparison between the two studied groups as regard criteria on ICU admission	80
8	Comparison between the two studied groups as regard changes in MABP and heart rate values.	81
9	Comparison between the two studied groups as regard ScvO2 values from the 1st day of ICU admission till the whole study period.	85
10	Comparison between both groups as regard (SaO2 – ScvO2)%	86
11	Comparison between the two studied groups as regard serum creatinine from the 1st day of ICU admission till the whole study period.	88
12	Comparison between the two studied groups as regard BUN values	89
13	Comparison between the two studied groups as regard ALT and AST from 1st day of ICU admission till the whole study period.	90
14	Comparison between the two studied groups as	91

Table No.	Title	Page
	regard PT & PTT values	
15	Comparison between the two studied groups as regard arterial lactate and creatine phosphate kinase value.	94
16	Comparison between the two studied groups as regard (WBCs), C reactive protein (CRP) and Interleukin 6 (IL6)	95
17	Comparison between the two studied groups as regard Sequential Organ Failure Assessment (SOFA) score.	97
18	Comparison between the two studied groups as regard duration of ICU stay and total dose of vasopressor "Norepinephrine"	98

Figure No.	Title	Page
1	Pathophysiology of sepsis and multi-organ failure	8
2	Pentameter structure of CRP, including calcium and phosphocholine binding sites	12
3	Stimulation and synthesis of positive acute-phase reactants during inflammation	12
4	Proposed contributions of HMGB1 to sepsis	15
5	Nicotinic anti-inflammatory pathways	16
6	Neural modulation of inflammation	17
7	Mechanisms of coagulopathy in sepsis	19
8	Impact of apoptosis on immune function in sepsis	21
9	Principal mechanisms implicated in the development of microcirculatory alterations in sepsis	23
10	Physiological and pathological oxygen supply dependency	24
11	Mechanisms of organ dysfunction in sepsis	26
12	Sepsis and the Heart.	30
13	Clinical Pathway: Initial Resuscitation Of Severe Sepsis	40
14	Clinical Pathway: Management Of Severe Sepsis and Septic Shock	41
15	Inhibition of HMG CoA reductase reduces intracellular cholesterol levels	52
16	Chemical structure of Atorvastatin	54
17	Pleiotropic effects of statins	64

Figure No.	Title	Page
18	Statins & lymphocyte binding	71
19	Comparison between mean values of MABP among Group I	82
20	Comparison between mean values of MABP among Group II	82
21	Comparison between mean values of HR among Group I	83
22	Comparison between mean values of HR among Group II	83
23	Comparison between Group I and Group II As regard MABP	84
24	Comparison between Group I and Group II As regard HR.	84
25	Comparison between Group I and Group II as regard ScvO2 %	85
26	Comparison between mean values of SaO2-ScvO2 among Group I	86
27	Comparison between mean values of SaO2- ScvO2 among Group II	87
28	Comparison between mean values of serum creatinine among Group I	88
29	Comparison between mean values of serum creatinine among Group II	88
30	Comparison between Group I and Group II As regard serum creatinine	89

Figure No.	Title	Page
31	Comparison between mean values of PT among Group I	91
32	Comparison between mean values of PT among Group II.	92
33	Comparison between mean values of PTT among Group I	92
34	Comparison between mean values of PTT among Group II	92
35	Comparison between Group I and Group II As regard PT	93
36	Comparison between Group I and Group II As regard PTT	93
37	Comparison between Group I and Group II As regard WBCs	96
38	Comparison between Group I and Group II as regard CRP	96
39	Comparison between Group I and Group II as regards IL-6	97
40	Comparison between Group I and Group II as regard SOFA score.	98
41	Comparison between Group I and Group II as regard ICU stay	99
42	Comparison between Group I and Group II as regard total dose of Norepinephrine	99

ABBREVIATIONS

ALT	Alanine aminotransferase
АРАСНЕ	Acute Physiology and Chronic Health Evaluation
APC	Activated protein C
ARDS	Acute respiratory distress syndrome
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate
BUN	Blood Urea Nitrogen
CD	Cluster of differentiation
CPK	Creatine phosphokinase
CRP	
CRRT	Continous renal replacement therapy
CVP	Central venous pressure
CYP	Cytochrome P
DIC	Disseminated Intravascular Coagulopathy
DNA	Deoxyribonucleic acid
DO2	Oxygen delivery
DVT	Deep venous thromboembolism
EGDT	Early Goal directed therapy
FiO2	Fraction of inspired oxygen
GAGs	Glycosaminoglycans
G-CSF	Granulocyte colony-stimulating factor

GM-CSF	Granulocyte macrophage colony-stimulating factor
HIV	Human Immune Deficiency Virus
HMGB1	High-mobility group box 1
HMG-CoA	3-hydroxy-3-methylglutaryl-coenzyme A
НО	Heme oxygenase
HR	Heart rate
ICAM	Intercellular adhesion molecule
ICU	Intensive care unit
IL	Interleukin
INF	Interferon
LDL	Low density lipoprotein
LFA	Lymphocyte function-associated antigen
LPS	Lipopolysaccharide
LVEF	Left ventricular ejection fraction
MABP	Mean Arterial Blood Pressure
MAPK	Mitogen-activated protein kinase
MCP1	Monocytic chemoattractant protein
MDR	Multi Drug Resistant
MHC	Major Histocompatibility Complex
MIF	Macrophage inhibitory factor
NO	Nitric oxide
PAF	Platelet activating factor

PAI-1	Plasminogen activator inhibitor-1
PaO2	Arterial O2 tension
PGE2	Prostaglandin E2
PGI2	Prostaglandin I2
POAP	Pulmonary artery occlusion pressure
PPAR	Peroxisome proliferator-activated receptor gama
PT	Prothrombin time
PTT	Partial thromboplastin time
SaO2	Arterial oxygen saturation
SBP	Systolic Blood Pressure
SIRS	Systemic inflammatory response syndrome
SOFA	Sequential organ failure assessment
Scvo2	Central venous O2 saturation
Svo2	Mixed venous O2 Saturation
TF	Tissue factor
Th cell	T helper cell
TLR	Toll like receptor
TNF	Tumour necrosis factor
VO2	Oxygen uptake
WBC	White blood cell

INTRODUCTION

Sepsis is considered one of the leading causes of mortality in the hospital setting. Although some advances have been made in treating patients with sepsis, the mortality of patients with sepsis remains extremely high (**Stephen et al., 2011**).

Sepsis is a process consisting of numerous inflammatory cascades and it is initiated by the presence of bacterial toxins and results in systemic inflammation and multiple organ and tissue damage. Cytokines have a prominent role in the defense mechanisms of the host. Their production is mediated by numerous metabolic pathways, which are independent from each other. In order to treat sepsis effectively, intervention should be made at multiple levels, as controlling just one or two pathways does not impede the overall process (**Terblanche et al., 2007**).

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, namely statins, are a class of drugs used for their ability to lower cholesterol levels. Their primary indication is the prevention of cardiovascular disease. Recently statins have been attributed to have anti-inflammatory and immunomodulatory pleiotropic effects. They inhibit the synthesis of products of mevalonate pathway such as isoprenoids and geranyl-geranylpyrophosphate (Gao et al., 2008).

They also modify the intercellular interactions and the cellular chemotaxis of the immune system. Furthermore, statins reduce the release of cytokines and acute-phase proteins. They demonstrate antioxidant properties and an anti-apoptotic action,

contributing to the stabilization of the atheromatic plaque, modifying cell activity by inhibition of the expression of certain genes and participate in various other mechanisms of the inflammatory response (Gao et al., 2008).

Having all these properties, statins have been suggested as an adjunct in the treatment of patients with sepsis. Thus, we sought to examine the efficacy and safety of atorvastatin in the treatment of patients with sepsis.

CONTENTS

	Page
Introduction	1
Aim of Work	3
Review of Literature	4
Patients and methods	74
Statistical Methodology	78
Results	79
Discussion	100
Conclusion	117
Summary	118
References	122
Arabic summary	

INTRODUCTION

Sepsis is considered one of the leading causes of mortality in the hospital setting. Although some advances have been made in treating patients with sepsis, the mortality of patients with sepsis remains extremely high (**Stephen et al., 2011**).

Sepsis is a process consisting of numerous inflammatory cascades and it is initiated by the presence of bacterial toxins and results in systemic inflammation and multiple organ and tissue damage. Cytokines have a prominent role in the defense mechanisms of the host. Their production is mediated by numerous metabolic pathways, which are independent from each other. In order to treat sepsis effectively, intervention should be made at multiple levels, as controlling just one or two pathways does not impede the overall process (**Terblanche et al., 2007**).

Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, namely statins, are a class of drugs used for their ability to lower cholesterol levels. Their primary indication is the prevention of cardiovascular disease. Recently statins have been attributed to have anti-inflammatory and immunomodulatory pleiotropic effects. They inhibit the synthesis of products of mevalonate pathway such as isoprenoids and geranyl-geranylpyrophosphate (Gao et al., 2008).

They also modify the intercellular interactions and the cellular chemotaxis of the immune system. Furthermore, statins reduce the release of cytokines and acute-phase proteins. They demonstrate antioxidant properties and an anti-apoptotic action,

contributing to the stabilization of the atheromatic plaque, modifying cell activity by inhibition of the expression of certain genes and participate in various other mechanisms of the inflammatory response (Gao et al., 2008).

Having all these properties, statins have been suggested as an adjunct in the treatment of patients with sepsis. Thus, we sought to examine the efficacy and safety of atorvastatin in the treatment of patients with sepsis.