

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

BY

FAWZY ABD EL-FATTAH HASSAN EL-HAMALAWY B. SC. Petroleum Eng. Faculty of Engineering – Cairo University, 1973 Higher Studies Diploma Production Eng. Faculty of Engineering – Cairo University, 1981

A thesis submitted to the Faculty of Engineering at Cairo University In partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN PETROLEUM ENGINEERING

B ~ 7.9

Faculty of Engineering, Cairo University
GIZA, EGYPT
MARCH 2001

UPGRADE OF CONVENTIONAL RESERVOIR ENGINEERING METHODS FOR MANAGING DIFFICULT FIELDS; APPLICATION TO ZEIT BAY RESERVOIR

BY

FAWZY ABD EL-FATTAH HASSAN EL-HAMALAWY

B. SC. Petroleum Eng. Faculty of Engineering – Cairo University, 1973 Higher Studies Diploma Production Eng. Faculty of Engineering – Cairo University, 1981

A thesis submitted to the Faculty of Engineering at Cairo University In partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN PETROLEUM ENGINEERING

UNDER THE SUPERVISION OF

Dr. MOHÁMED HELMY SAYYOUH

Dr. ABD EL - SATTAR A. DAHAB

Professor of Petroleum Engineering

Professor of Petroleum Engineering

Dr. AHMED MAHER ABD EL -AZIZ ASSAL

Professor of Hydrology

Faculty of Engineering, Cairo University
GIZA, EGYPT
MARCH 2001

· January Mills

.

.

BY

FAWZY ABD EL-FATTAH HASSAN EL-HAMALAWY

B. SC. Petroleum Eng. Faculty of Engineering – Cairo University, 1973 Higher Studies Diploma Production Eng. Faculty of Engineering – Cairo University, 1981

A thesis submitted to the Faculty of Engineering at Cairo University In partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN PETROLEUM ENGINEERING

Approved by the	
Examining Committee	p
Helmy Jaygon	
	/
Prof. Dr. : MOHAMĚD HELMY SAYYOUH	,Thesis Main Advisor
Prof. Dr. : ABD ÉL-SATTAR A. DAHAB	,Thesis Main Advisor
Prof. Dr.: YOUSSRI ASAAD MIKHAIL Journ Chan	Member
Prof. Dr.: NOUR AHMED EL-EMAM	,Member

Faculty of Engineering, Cairo University
GIZA, EGYPT
MARCH 2001

TABLE OF CONTENTS

	_
LIST OF TABLES	viii
LIST OF FIGURES	xii
LIST OF SYMBOLS AND ABREVIATIONS	xvii
PRESENTATION	xxiii
ACKNOWLEDGEMENT	xxiv
ABSTRACT	XXV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	7
2.1 Volumetric Calculations	8
2.2 Material Balance	12
2.2.1 Material Balance Equation	12
2.2.2 Material Balance / Volumetric Combination	13
2.2.3 Material Balance Application	15
2.2.3.1 Material Balance in Partially	
Saturated Reservoirs	15
2.2.3.2 Average Reservoir Pressure for	
Material Balance Calculation	17
2.2.3.2.1 Average Reservoir Pressure at Datum	19

Page
2.2.3.2.2 Average Reservoir Pressure for
Water Influx Calculation 19
2.2.3.3 Natural Water Influx 20
2.2.3.4 The Proper Form of material balance (MB) for
Calculation of Oil-in Place and Water Influx 22
2.3 Recovery Efficiency
2.3.1 Definition, and Components of Recovery Efficiency 23
2.3.2 Recovery Efficiency Estimate From Imperical Relation-
ship "American Petroleum Institute(API) Correlation" 24
2.4 Drainage Pattern Evaluation
2.4.1 Determining Drainage Volumes of Wells 25
2.4.2 Schematic Representation of Remaining Reserves 27
2.4.2.1 Bubble Maps
2.5 Decline Curve Analysis
3. INTEGRATION SCHEME AND WORK PROCEDURE 33
4. CONSTRUCTION OF FLUID LEVEL CONTOUR MAPS 40
4.1 Procedure
4.2 Criteria Applied for Estimating The Gas And Water
Level Data
4.3 Results

		Page
5. VOLUI	METRIC CALCULATIONS AND QUANTIFICATION	
OF UN	NCERTAINTIES	. 48
5.1	1 Review of Reservoir Configuration	48
5.2	Reservoir Zonation	48
5.3	Review of Petrophysical Parameters	58
5.4	Quantifying the Areas of Uncertainties	. 59
	5.4.1 Concerning Belayim Reservoirs	. 59
	5.4.1.1 The Initial Gas Cap	64
	5.4.1.2 The Initial Oil Leg	64
	5.4.2 Concerning Basement Reservoir	65
	5.4.2.1 Feature of Uncertainties and Sources of Data	. 65
5.5	Volumetric Calculations	66
	5.5.1 Detailed Calculation With the Consideration of Only	
	Belayim Uncertainties	66
	5.5.2 Setting More Categories (Cases) for the HCIIP in Belayi	im
	Reservoirs Based on Its Corresponding Uncertainties .	. 78
	5.5.2.1 Concerning the Initial Gas Cap	. 78
	5.5.2.2 Concerning the Initial Oil Leg	. 78
	5.5.2.3 Summary of the Different Categories for Belayin	n
	HCIIP, as Estimated Based on Its Uncertainties	. 80
	5.5.3 Quantification of Basement Uncertainties by Estimating	
	the Different Categories For Its HCIIP	. 81

	Pa
5.5.3.1	Summary of the Two Existing Sources for
	volumetric Calculation, for the Basement
	Reservoir
5.5.3.2	Combination of Data Sources and Selection
	of Basement Volumetric Limits
5.5.3.3	Summary of the Selected Different Categories
	for the Basement HCHP
5.5.4 Incorpo	oration of the Uncertainties of Both Belayim and
Baseme	ent, for Setting the Different Categories of the
Total F	ield HCIIP 8
6. MAKING AN ESTI	MATE OF THE WATER INFLUX (WE) BASED
ON VOLUMETRIC	CANALYSIS
6.1 Determina	tion of the Water Swept Zone (WSZ) Reservoir
Pore Volu	me {
6.2 Making an	Estimate of the Volumetric Sweep Efficiency
Over the V	Vater Swept Zone (WSZ) 8
6.2.1 Fron	n Thermal Decay Time (TDT) Results
6.2.2 Fron	n Imperical Relationship (API Correlation) for
the V	Vater Drive Reservoirs
6.2.3 Com	bination of TDT and API Correlation Results 8
6.3 Minimizati	on of Error in We Estimate by Consideration of
a Midway	Time Step Between 1.7.1991 and 1.7.1998 9
6.4 Detection o	f the Most Representative Estimate for