Role of Doppler Ultrasonography in Surveillance of Vascular Access and Assessment of the Shunt in Hemodialysis Patients

Essay

Submitted for partial fulfillment of Master degree in Radiodiagnosis

Submitted by

Sara Mohammad Shehatah Mohammad El Geneidy

(M. B. B. Ch) Ain Shams University

Under supervision of

Prof. Dr. Sameh Abd El-Wahab

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Ahmed Basiouny

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to Allah, The Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sameh Abd El-Wahab**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his guidance, kind supervision, valuable advice, and continuous encouragement, which made possible the completion of this work. I really have the honor to complete this work under his supervision.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Basiouny,** Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable help and great assistance throughout this work.

I would like to express my hearty thanks to all my **Family** for their support till this work was completed.

🖎 Sara Mohammad Shehata

List of Contents

Subject	Pa	ge No.
List of Abbro	eviations	i
List of Table	S	ii
List of Figure	es	iii
Introduction	•••••	1
Aim of the W	ork	4
Chapter (1):	Vascular Access for Hemodialysis and its types	
Chapter (2):	Gross & Radiological Anatomy of Neck and Upper Limb Vessels	14
Chapter (3):	Technique of ultrasonographic and Doppler examination of the normal shunt	32
Chapter (4):	Complications of the Shunt	
Chapter (5):	Case Presentation	72
Summary an	d Conclusion	79
References	•••••	81
Arabic Sumn	nary	

List of Abbreviations

Abbr. Full-term

AKF : Acute kidney failure **AVF** : Arteriovenous fistula

BA : Brachial artery

CDS : Color Doppler sonography

CKF : Chronic kidney failure

CVC : Central venous catheter

DSA : Digital subtraction angiography

DUS : Doppler ultrasound

ESKD : End-stage kidney disease

GFR Glomerular filtration rate

HD : Hemodialysis

IJV : Internal jugular vein

LSA : Left subclavian artery

PD : Peritoneal dialysis

PTFE : Polytetrafluoroethylene

RI : Resistance index

RSA : Right subclavian artery

List of Tables

Cable N	o. Eitle	Page No.
Table (1):	Anatomical variations of the upper li	
Table (2):	Major collateral pathways of the upp	er arm 24
Table (3):	Minimal vascular requirement for a successful AVF	52
Table (4):	Grading severity of AV complication	n54
Table (5):	Classification of steal syndrome	65

List of Figures

Eable No.	Citle Page No
Figure (1):	Quinton-Scribner AV shunt
Figure (2):	Typical arterivenous fistula (Brescia-Cimino)
Figure (3):	Schematic view of the arteriovenous graft 11
Figure (4):	Tunneled catheter for hemodialysis, Tesio model. Two separate lumen are suitable for better blood flow and less recirculation
Figure (5):	Anatomy of Subclavian artery 16
Figure (6):	Anatomy of axillary artery 17
Figure (7):	Branches of Axillary artery
Figure (8):	Anatomy of brachial artery 20
Figure (9):	Arteries of forearm
Figure (10):	Superficial veins of upper limb
Figure (11):	Antecubital fossa superficial veins
Figure (12):	The veins of the right axilla, viewed from in front
Figure (13):	Normal arteiovenous fistula. Trnsverse section through arterial (A) to venous (V) anastmosis
Figure (14):	Duplex sonogram of the radial artery demonstrates typical monophasic flow supplying a low-resistance radiocephalic fistula
Figure (15):	Puncture site swelling after dialysis
1 1gui (13).	i difeture site swelling after diarysis

Figure (16):	Fresh (low echogenicity) and older (high echogenicity) thrombotic material	60
Figure (17):	PTFE graft occluded, and interventionist successfully stented occluded right subclavian vein endovascularly	60
Figure (18):	Types of stenoses according to site	. 62
Figure (19):	Stenosis of dialysis access	63
Figure (20):	Doppler color flow imaging demonstrates post-stenotic turbulence distal to the narrowest segment of the vein	64
Figure (21):	'Steal phenomenon' in the radial artery at the anastomotic region.	66
Figure (22):	Color Doppler of an anechoic seroma generating a post-anastomotic venous stenosis	68
Figure (23):	Scan and interpretation techniques for AVF evaluation using MDCT	70
Figure (24):	Findings of accessory veins and central vein thrombosis.	71
Figure (25):	CDUS of the AVF showing complete thrombosis of the fistula and its venous limbs	72
Figure (26):	CDUS of the avf showing excessive blood flow passing through the shunt	73
Figure (27):	CDUS of the BB AVF at the bend of the elbow showing high grade shunt stenosis with up stream (venous limb) marked aneurysmal dilatation	74
Figure (28):	CDS at the level of the avf showing tight stenotic anastomosis with marked reduction in flow rate 133 ml/min	75

Figure (29):	CDUS showing systolic diastolic flow alteration demonstrated both on color Doppler scanning
Figure (30):	PTFE puncture aneurysm
Figure (31):	Doppler Ultrasound showing saccular aneurysm

Introduction

rteriovenous fistula (AVF) is the most widely used means of vascular access for long-term hemodialysis (HD) in patients with end-stage renal disease. Satisfactory function of these artificial shunts is essential for adequate hemodialysis (*Lindert et al.*, 2012).

Preoperative evaluation of upper extremity veins and arteries with duplex ultrasound is a useful adjunct to physical examination, especially for those patients who are obese, have had multiple previous access surgeries or otherwise are difficult to examine well, or for those in whom arterial or venous disease is suspected (*Ferring et al.*, 2010).

Although access is the lifeline for the hemodialysis patient, its creation and maintenance is a difficult undertaking. After creation of the access, prolonged functional patency may prove elusive due to the development of stenotic lesions leading to thrombosis or failure to mature (*Kumbar & Karim*, 2012).

The complication rate related to permanent HD vascular access remains high and accessrelated problems are responsible for 50% of the hospitalization of dialysis patients. Most of these complications are related to the thrice-weekly trauma to the graft inflicted by large core

needles required for hemodyalisis treatment. Because potential sites for vascular access are limited, extending the life of an existing fistula or graft is of great benefit. Thus, early detection, localization, and characterization of lesions that compromise hemodyalisis are extremely important because they may allow correction before failure of the access (*Middleton et al.*, 2009).

Traditional methods of graft surveillance include: clinical examination, venous line pressure measurements during dialysis, urea or tracer recirculation measurement, duplex ultrasonography and angiography. The frequency of occurrence of recurring access problems mandates a method of examination that is accurate, noninvasive, and can be repeated as often as needed to evaluate the morphology and function of the fistulas. Color Doppler sonography (CDS) has established itself in recent years as the procedure of first choice for the evaluation of HD access problems (*Elsharawy & Moghazy*, 2006).

Duplex ultrasound imaging lends itself well to the evaluation of hemodialysis access as grafts and fistulas are superficial structures. This modality allows identification and localization of abnormalities, which may potentially threaten access function and patency. Identification and correction of access abnormalities at early stages may improve longevity

and function as blood flow <500/cc/min or stenosis >50% identified on duplex exam has been correlated with access thrombosis within 6 months (*Strauch et al.*, 2012).

Duplex sonography and flow volume measurements have been used for graft surveillance for the prediction of graft failure. According to reports in the literature, the mean flow rates range from 500 to 1000 mL/min. An excessive fistula flow rate is often suspected when clinical problems such as cardiac failure, recurrent swelling of the access arm, or steal syndrome arise. Excessive fistula flow may, in some cases, necessitate surgical reduction of the anastomotic orifice or closure of the anastomosis with creation of a new fistula. In patients with proximal venous stenoses, fistula flow is an important factor in the development of venous congestive symptoms such as edema, pain, and atrophic skin changes (*Paun et al.*, 2010).

Aim of the Work

To emphasize the role of duplex ultrasonography in evaluation and surveillance of vascular access and assessment of the shunt in hemodialysis patients.

Chapter (1)

Vascular Access for Hemodialysis

1. Introduction

Patients with acute kidney failure (AKF) and chronic kidney failure (CKF) require an appropriate vascular access for hemodialysis (*Ortega et al.*, 2005).

Vascular access is needed to allow blood flow through an extracorporeal circulation system with a blood pump connected to a hemodialysis monitor driving the blood through a dialysis filter (dialysator). Satisfactory levels of blood flow range between 300 and 400 mL/min.

The need for vascular access in patients with kidney failure may be temporary or permanent (*NKF-K/DOQUI*, 2000).

2. Temporary hemodialysis vascular access

Temporary hemodialysis access is required in patients scheduled to start hemodialysis treatment in several days to six months. It is mostly needed in patients with AKF of various etiology (*Weijmer & ter Wee*, 2004).

For that purpose, a hemodialysis catheter is introduced percutaneously into one of the large central veins (the internal