

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

STUDY OF Ti-Al BASED ALLOYS

M.SC. THESIS SUBMITTED TO

Physics Department
Faculty Of Science
Suez Canal University

BY AHMED EL-SAYED RAGAB HANNORA

UNDER THE SUPERVISION OF

Prof. Dr. A.M. SHAMAH

Science and Mathematics Department

Faculty of Pet. and Min. Eng.

Suez Canal University

Prof. Dr. S.A.IBRAHIM

Metallurgical Eng. Department

Faculty of Pet. and Min. Eng.

Suez Canal University

Prof. Dr. Y.M.ABBAS

Jeli Mis

Physics Department.

Faculty of Science

Suez Canal University

1.15h

2000

To My Father's Memorial

ACKNOWLEDGMENT

The author wishes to express his thanks and gratitude to *Prof.Dr.A.M.Shamah*, Vice Dean of Faculty of Petroleum and Mining Engineering, *Prof.Dr.S.A.Ibrahim* head of Metallurgical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, and strongly indebted to *Prof.Dr.Y.M.Abbas* Vice Dean of, Faculty of Science, Suez Canal University, for all their help and encouragement throughout the course of this work.

I'm grateful to *Prof.Dr.W.M.Attia* head of physics Department, Faculty of Science, Suez Canal University and *Prof.Dr. R.A.Abu El-Ella*, head of Science and Mathematics Department, Faculty of Petroleum and Mining Engineering for their encouragement and advice.

The author also thanks *Prof.Dr. M.F.El-Shahed* Refinery Eng. Dept., for His Help, and Special Thanks to *Prof.Dr.R.M.Ramadan* and *Prof.Dr.M.I.Ammar* Metallurgical Eng. Dept., Faculty of Pet. and Min. Eng., Suez Canal University.

The author wishes to express gratitude to all staff members of the Science and Mathematics Dept. and Metallurgical Eng. Dept., Faculty of Petroleum and Mining Engineering, Suez Canal University for their great assistance. Special Thanks to *Prof.Dr.M.M.Sherif* Physics Dept., Faculty of Science, Cairo Univ. and his group.

The author wishes to thank his family for their encouragement, patience and understanding throughout the course of this work.

SUMMARY

SUMMARY

Elemental powders of Al and Ti with compositions, Al-(20, 40 and 60wt.%) Ti with the same amount of n-heptane were mechanically alloyed in ball milling "Attritor". Milling was carried up to 120-130 hours for the first two systems while for the third one to 90 hours, in an inert atmosphere at room temperature. X-Ray Diffraction (XRD), Optical Microscope (OM), Scanning Electron Microscope (SEM) and Differential Thermal Analysis (DTA) characterized the alloyed systems. The powder particles of Ti and Al interact with each other forming Al₃Ti and Ti₃Al intermetallic. Mechanochemical reactions took place between metals and liquid heptane, where the reactivity was enhanced by dry pre-milling of the metals powders for 50h. The heptane decomposed into carbon and hydrogen, forming f.c.c. TiC, and Al₂Ti₄C₂. The hydrogen that is released as another product of n-heptane decomposition could have some effect on the alloying process. However, there is no hydride phase was observed by XRD, possible hydride phase formation in a small quantity can not be excluded to occur during milling. While Al₃Ti and Ti₃Al intermetallic did not react with carbon or hydrogen. From the change in the lattice parameter of Al after 50h of MA (Al-20wt.%Ti), the solubility of Ti in Al could be estimated to be ≈ 3.2at.%Ti. With the progression of the milling time, the particle size was effectively reduced and the grain size becomes in the nanoscale. The XRD patterns showed that, the Ti concentration plays an important role for the system amorphization, where the amorphous phases were seen to be more rapidly formed with increasing Ti content. It is possible to say that, at the final stage, one might have an in-situ composite in amorphous base.

ABBREVIATIONS

DTA	Differential Thermal Analysis
XRD	X-Ray Diffraction
SEM	Scanning Electron Microscopy
OM	Optical Microscopy
MA	Mechanical Alloying
NCM	NanoCrystalline Material
b.c.c.	Body Centered Cubic
f.c.c.	Face Centered Cubic
h.c.p.	Hexagonal Close Packed
rms	Root Mean Square
rpm	Revolution Per Minute
TEM	Transmission Electron Microscopy
HREM	High Resolution Electron Microscopy
FWHM	Full Width at Half Maximum Intensity

SYMBOLS

Al	Aluminum
Ti	Titanium
С	Carbon
θ	Bragg Angle
β_{hkl}	Full Width at Half Maximum Intensity of hkl
	reflection
λ	Wavelength
K	Wave vector
$< e^2 > 1/2$	Root Mean Square of Strain
X_{cr}	Crystalline Fraction
I_{cr}	Integrated Intensity Under XRD Peaks
I _{tot.}	Integrated Intensity Under The Whole XRD Pattern
φ	Heating Rate
L_{hkl}	Particle Size
a_{Al}	Lattice Parameter of Aluminum
a_{Al3Ti}	Lattice Parameter of Al ₃ Ti

CONTENTS

ACKNOWLEDGME	NT	ii
SUMMARY		iii
ABBREVIATIONS		iv
SYMBOLS		v
CHAPTER ONE	INTRODUCTION	1
CHAPTER TWO	LITERATURE REVIEW	3
2.1. TITANIU	M-ALUMINUM BASED ALLOYS	3
2.1.1. Ti-Al I	Based Alloys by Conventional Methods	3
2.1.2. Mecha	nically Alloyed Ti-Al Based Alloys	6
2.1.3. Structi	re of Ti-Al-C	9
2.1.3.1. Th	eoretical Prediction of Electronic Structure	9
2.1.3.2. Pre	evious Work of Ti-Al-C Structure	11
2.2. MECHAN	ICAL ALLOYING (MA)	11
2.2.1. Mecha	nical Alloying Mechanism	13
2.2.1.1. Me	echanical Alloying Stages (Periods)	15
2.2.1.2. Lo	cal and Global Dynamics of MA Process	18
2.2.2. Mecha	nical Alloying Devices	19
2.2.3. Nonequ	uilibrium and Amorphization	20
2.2.3.1. An	norphization Conditions	22
2.2.3.2. For	rming Amorphous Phase	22
2.2.3.3. Sol	lid-State Amorphization Reaction	23
2.2.4. Vial Te	mperature During MA	24
2.2.5. Applica	ation of Mechanically Alloyed Synthesis	25
2.3. NANOCRY	YSTALLINE MATERIAL (NCM)	26
2.3.1. Classif	ication of NCM	26

2.3.2. Synthesis Methods of NCM2	7
2.3.3. Advantages and Disadvantages of NCM synthesize Methods30	0
2.3.4. NCM Modeling	2
2.3.4.1. Basic Idea of NCM Modeling	3
2.3.4.2. Modeling Technique	3
2.3.5. Structure of Nanometer-Sized Crystallites35	5
2.3.6. NCM Crystallized From Amorphous Solids37	7
2.3.7. Applications of Nanosized Particles38	
2.4. X-RAY DIFFRACTION39	ľ
2.4.1. Intensity of the Diffracted X-Ray Beam42	
2.4.2. Broadening of the Diffracted X-Ray Beam44	
2.4.2.1. Grain Size Factor	
2.4.2.2. Strains Factor	
2.5 HEAT TREATMENT(DIFFERENTIAL THERMAL ANALYSIS) 50	
CHAPTER THREE EXPERIMENTAL WORK53	
3.1. ATTRITOR DESIGN AND MODIFICATION53	
3.2. MATERIALS AND SAMPLES	
3.3. X-RAY DIFFRACTION MEASUREMENTS	
3.4. THERMAL MEASUREMENTS	
3.5. MORPHOLOGY STUDIES 60	
CHAPTER FOUR RESULTS AND DISCUSSION61	
4.1. X-RAY DIFFRACTION ANALYSIS61	
4.1.1. Mechanical Alloying Al-20wt.% Ti	
4.1.2. Mechanical Alloying Al-40wt%Ti70	
4.1.3. Strain Effects	
4.1.4. Mechanical Alloying Al-60wt%Ti79	
4.2. MORPHOLOGY85	
4.3. THERMAL STABILITY RESULTS90	
4.3.1. Mechanical Alloying Al-20wt.%Ti94	