

Ain Shams University Faculty of Engineering Electrical Power and Machines Department

TRANSMISSION LINE PROTECTION USING SYNCHRONIZED SAMPLING

A Thesis Submitted in the Partial Fulfillment of the **Master Degree**

Electrical Engineering – Power and Machines

By

Eng. Hoda Farouk Mohamed Anis Eltarabishy

Teaching Assistant
Faculty of Engineering-Ain Shams University

Supervised by

Prof.Dr. Mohamed M. Mansour

Faculty of Engineering Ain Shams University

Prof. Dr. Hossam El Din Abdallah Talaat

Faculty of Engineering Ain Shams University

Prof. Dr. Ibrahim Al-Desouky Helal

Faculty of Engineering Ain Shams University

Cairo, Egypt 2014

LIST OF References

- M. Kezunovic, H. Song, N. Zhang, "Detection, Prevention and [1] Mitigation of Cascading Events, Part I of Final Project Report", Power Systems Engineering Research Center, Oct. 2005, available at http://www.pserc.org
- [2] Zoran Radojevi'c, Vladimir Terzija, "Effective two-terminal numerical algorithm for overhead lines Protection", Electrical Eng , Springer-Verlag: pp. 425-432, March 2006.
- [3] Marija Bočkarjova, Aleksandrs Dolgicers and Antans Sauhats, "Enhancing Fault Location Performance on Power Transmission **Lines**," IEEE Conference Publications, pp.1123 – 1128, 2007.
- [4] Walter A. Elmore, **Protective Relaying: Theory and Applications**, New York: Marcel Dekker, Inc., second edition, 2004.
- [5] J. Lewis Blackburn, Thomas J. Domin, Protective Relaying: Principles and Applications, New York: Taylor & Francis Group, LLC., Third edition, 2006.
- [6] Gopalakrishnan, M. Kezunovic S. M. McKenna, D. M. Hamai, "Extension of Fault Location Algorithm Based on Synchronized **Sampling"**, CIGRE Colloquium, SC 34, Florence, Italy, October 1999.
- [7] Nan Zhang, "Advanced Fault Diagnosis Techniques and Their Role in **Preventing Cascading Blackouts**," Power Systems Engineering Research Center, Dec. 2006, available at http://www.pserc.org

- [8] Zoran Radojevi´c · Vladimir Terzija, "Effective Two-Terminal Numerical Algorithm for Overheadlines Protection", Electrical Engineer, Vol. 89, pp: 425–432,2007.
- [9] Demertrios Tziiouvaras and Daqing Hou, "Out-of-Step Protection Fundamentals and Advancements", Annual Western Protective Relay Conference, Spokane, Washington, October 21-23, 2003.
- [10] M.M. Mansour and G.W. Swift, "A Multi-Microprocessor Based Travelling Wave Relay Theory And Realization," IEEE Transactions on Power Delivery, Vol. PWRD-1, No. 1, pp 272-279, Jan.1986.
- [11] M. Kezunovic and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two ends," IEEE Trans. Power Systems, vol. 11, no. 1, pp. 441–447, Feb. 1996.
- [12] M. Kezunovic, B. Perunicic, and J. Mrkic, "An accurate fault location algorithm using synchronized sampling," Electric Power Systems Research Journal, vol. 29, no. 3, pp. 161–169, May 1994.
- [13] Nan Zhang and M. Kezunovic, "Complete Fault Analysis For Long Transmission Line Using Synchronized Sampling," IFAC Symposium on Power Plants and Power Systems Control, Canada June 2006.
- [14] A.Gopalakrishnan and M. Kezunovic, "Fault location using distributed parameter transmission line model," IEEE Trans. Power Delivery, vol. 15, no. 4, pp. 1169–1174, Oct. 2000.
- [15] Nan Zhang, Mladen Kezunovic, "A Study of Synchronized Sampling Based Fault Location Algorithm Performance under Power Swing and Out-of-step Conditions", Power Tech., IEEE ,pp 1-7,Russia, June 27-30, 2005.

- [16] Murari Mohan Saha, Jan Izykowski and Eugeniusz Rosolowski, **Fault Location on Power Networks**, London: Springer-Verlag London Limited, 2010.
- [17] Sachdev MS, "Advancement in microprocessor based protection and communication", IEEE Tutorial Course, IEEE PES, IEEE Catalog Number: 97TP120-0, 1997.
- [18] Cook V, "Fundamental aspects of fault location algorithms used in distance protection" IEE Proc C 133(6):pp.359–368, 1986.
- [19] Cook V, "Analysis of Distance Protection", Research Studies Press Ltd., New York: John Wiley & Sons, Inc., 1985.
- [20] Ziegler G , Numerical Distance Protection: Principles and Applications, Siemens AG, MCD Verlag, Erlangen, 2006.
- [21] Izykowski J , "Fault location on power transmission lines", The Technical University of Wroclaw Press, Wroclaw, Poland, 2008.
- [22] Sachdev MS, "Advancement in microprocessor based protection and communication", IEEE Tutorial Course, IEEE PES, IEEE Catalog Number: 97TP120-0, 1997.
- [23] Xiuyu Zheng, Xiaoming Li, Jianyong Ding and Zhiyuan Duan, "Study on impedance-traveling wave assembled algorithm in one-terminal fault location system for transmission lines", Electric Utility Deregulation and Restructuring and Power Technologies, Third International Conference: pp. 1723-1726, Apr. 2008.

- [24] TAHAR BOUTHIBA, "Fault Location in EHV Transmission Lines Using Artificial Neural Networks", Int. AMCS, Vol. 14, No. 1:pp. 69–78, 2004.
- [25] Mattias Jonsson, "Line Protection and Power System Collapse",
 Master's Thesis, Department of Electric Power Engineering, Chalmers
 University of Technology, Goteberg, Sweden, 2001.
- [26] www8.garmin.com/aboutGPS/index.html.
- [27] A.G.Phadke, "Synchronized Phasor Measurement in Power Systems."

 Computer Applications in Power, IEEE, Volume 6, Issue 2, Page(s):10

 15, Apr. 1993.
- [28] John C. Eidson, Agilent Technologies, John Tengdin, OPUS Publishing, IEEE-1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems and Applications to the Power Industry", Sensors for Industry Conference, 2nd ISA/IEEE, 19-21 Nov. 2002.
- [29] Antans Sauhats, Marija Danilova,"Fault Location Algorithms for Super High Voltag Power Transmission lines",Power Tech Conference Proceedings, IEEE, Vol. 3, 23-26 June 2003.
- [30] Himani Mahajan and Ashish Sharma, "Various Techniques used for Protection of Transmission Line- A Review," International Journal of Innovations in Engineering and Technology (IJIET), Vol. 3, Issue 4,pp. 2319 – 1058, April 2014.

Statement

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for M.Sc degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the Electrical Power and Machines
Department, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Hoda Farouk Mohamed Anis Eltarabishy

Signature:

Date: 1/12/2013

Acknowledgements

First of all, I am much thankful to Allah. In memory of **Prof. Dr.Mohamed Mansour**, this is to acknowledge his fruitful efforts and contribution to initiate the subject study, special thanks and prayers of blessings to his efforts and support. May Allah bless his soul.

I would like also to express deepest gratitude and thankfulness to **Prof. Dr. Hossam El-Din Abdallah Talaat** and **Prof. Dr. Ibrahim Al-Desouky Helal** for their great support, excellent supervision and encouragement during the period of this study.

Special thanks to **Eng. Nada Salah El-din Mekkawy** for her great support

Last but not least, I am grateful to my family for supporting me all along the thesis.

Abstract

This thesis introduces a complete transmission line protection scheme using synchronized sampling technique implemented with neural networks to precisely detect, classify and locate fault over along transmission line.

For fault detection and classification module, synchronized data of voltage and current signals from both ends of transmission line are processed using a mathematical algorithm to generate the inputs to an Artificial Neural Network (ANN). The target of that ANN signifies the occurrence of a fault. The appearance of current featured modal components points out the type of fault. A data window of 0.25 cycle is used to ensure a fast process.

For the fault location, two approaches were adopted, both based on synchronized sampling time domain data:

Single stage Featured Fault currents fault locator: The first approach uses the featured fault modal components chosen according to fault type as an input to ANN. The ANN is trained on different system conditions (fault inception angle, system loading, fault resistance, fault type) while the ANN target points out the fault location with an acceptable margin.

Single Stage Current Traveling wave based fault locators: The second approach on a different mathematical formulation. The algorithm was used to calculate fault location using current traveling waves based on synchronized data (Single Stage).

Double Stage current Traveling wave based Fault Locators: in the third scheme, the results for fault location are further refined via a trained ANN to minimize the error in the previously determined location from the previous scheme.

The computer software of the studied power system was carried out on PSCAD and the proposed protection schemes were developed using MATLAB. The results of all approaches were tested and validated. Comparisons among different techniques against same criteria were demonstrated.

Table of Contents

Chapter (1): Introduction	
1.1 General	1
1.2 Problem Description	2
1.3 Thesis Objectives	2
1.4 Thesis Outline	3
Chapter (2): Transmission Line Fault Analysis: Literature Review	5
2.1. Introduction	5
2.2. Criteria of designing protection system	6
2.2.1. Reliability	6
2.2.2. Selectivity	6
2.2.3. Speed	7
2.2.4. Performance vs. Economics	7
2.2.5. Simplicity	8
2.3. Complexities of Transmission Line Protection	8
2.4. Transmission Line Protection Classification	8
2.5. Shortcomings with Traditional TL Relaying	10
2.6. Modern Transmission Line Protection	11
2.6.1. Modern TL Fault Detection and Classification Algorithms	12
2.6.1.1. The Phasor Approach	12
2.6.1.2. Fourier Transform Approach	14
2.6.1.3. Travelling Wave Based Approach	14
2.7. Transmission Line Protection Using Synchronized Sampling	15
2.8. Fault Locators	19
2.8.1. Fault Locatots versus Protective Relays	19
2.8.2 Recent Techniques used for Fault Location	20

2.9. Sy	nchronized Sampling Based Fault Detectors	22
Chapter (3): Synchronized Sampling for Fault Analysis: Theory and Proposed	
	Methodology	25
3.1 Inti	roduction	25
3.2 Syn	chronized Sampling Algorithm: Mathematical Model	26
3.3 Cor	nplete Fault Analysis for Long Transmission Line	28
3.3.1	Single Phase Transmission Line System	28
3.3.2	Three Phase Transmission Line System	33
3.4 Tec	hnologies used in the Design of Synchronized Sampling Transmission Line	
Pro	tection System	35
3.4.1	The Global Positioning System	35
3.4.2	Intelligent Electronic Devices	37
3.5 Sys	tem Understudy	39
3.5.1	System (A) Data	39
3.5.2	System (B) Data	40
3.6 PSC	CAD Models of Study Systems	40
3.7 Cor	relation between Fault Featured Current Model Components	
and	I Fault Current	41
3.7.1	The Impact of Fault Location	42
3.7.2	The Impact of Fault Inception Angle	43
3.7.3	Comment on the Study	43
3.8 Fau	Ilt Detection and Classification	44
3.8.1	Theory	44
3.8.2	Simulation of Study System under Different fault Types	45
3.8.3	Proposed Scheme for Fault Detection and Classification	48
3.9 Fau	Ilt Locations Schemes	50
3.9.1	Scheme1: Single Stage Fault Location Estimation (ANN)	52
3.9.2	Scheme2: Single Stage Current Travelling Wave based Fault Locator	53

3.9.2.1 Fault Location Index	55
3.9.3 Scheme3: Double Stage Current Travelling Wave based Fault Locator	59
Chapter (4): Performance and Results of the Proposed Schemes	62
4.1. Introduction	62
4.2. Fault Detection and Classification ANN Scheme	62
4.2.1. ANN Design	62
4.2.2. ANN Training	64
4.2.3. ANN Testing	65
4.2.4. Results and conclusion	66
4.3. Scheme 1:Single Stage ANN-based Fault Location Estimation	67
4.3.1. 3-phase to ground fault ANN	67
4.3.2. Phase to phase (A-B) Fault ANN	70
4.3.3. A-G fault ANN	72
4.3.4. Comments on Results	75
4.4. The Impact of Synchronized Sampling on Fault Locator Performance	76
4.4.1. Case 1: ANN Fault Locator using Synchronized Sampling and GPS for da	ta
transfer	76
4.4.2. Case 2: ANN Fault Locator using Synchronized Sampling and Hollow Fiber	
Optics	76
4.4.3. Case 3: ANN Fault Locator and non-unit Protection	
(Data used from one end)	77
4.4.4. Comparison between three Cases of Fault Location Estimations ANNs	77
4.5. Scheme 2: Single Stage Current Travelling Wave Based (CTWB) Fault Locator	80
4.6. Scheme 3: Double Stage CTWB Fault Locator	
4.7. The Proposed Algorithm for merging Scheme 2 and Scheme 3	86
Chapter (5): Conclusions	88
5.1. Research Findings	88

List of Figures

1.	Figure (2.1) Classification of Transmission Line protection	10
2.	Figure (2.2) PMU arrangement	13
3.	Figure (2.3) Travelling wave base relay	14
4.	Figure (2.4) Flowchart of Fault Classification	18
5.	Figure (2.5) Major blocks constituting the fault detector and locators	21
6.	Figure (2.6) A faulted Transmission Line	22
7.	Figure (3.1) A hypothetical three Phase Transmission Line	26
8.	Figure (3.2) Homogenous T.L where no fault occurs	30
9.	Figure (3.3) A faulted transmission line	31
10.	Figure (3.4) GPS System consisting of 24 satellites around Earth orbit	36
11.	Figure (3.5) Single line Diagram of System A and System B	39
12.	Figure (3.6) Simulated Model of Study Systems (A) and (B)	40
13.	Figure (3.7) The fault featured current on 19 different locations under same system	n
	conditions	42
14.	Figure (3.8) The fault featured current under same loading conditions and same	
	location with different fault inception angles	43
15.	Figure (3.9) Seven calculated modal components of sending end featured fault cur	rent
	for no fault case	46
16.	Figure (3.10) Seven calculated modal components of sending end featured fault	
	current for no A-B fault	46
17.	Figure (3.11)) Seven calculated modal components of sending end featured fault	
	current for no A-G fault	47
18.	Figure (3.12) Proposed Scheme for fault Detection and Classification	49
19.	Figure (3.13) Proposed Scheme for Fault Locators	50
20.	Figure (3.14) Architectural of the proposed fault location scheme	52
21.	Figure (3.15) Generation of training set for ANN	60
22.	Figure (3.16) Training of ANN scheme 3	60
23.	Figure (3.17) Block Diagram of Double Stage CTWB line to ground (A-G)	
	Fault locator	61
24.	Figure (4.1) ANN for Fault Detection and Classification	62
25.	Figure (4.2) Regression between inputs and outputs in training, validation and tes	ting
	of ANN	64

26.	re (4.3) Error Histogram during testing of ANN Fault detection and classification		
	and classification	65	
27.	Figure (4.4) Single Stage Fault Estimation ABCG ANN	67	
28.	Figure (4.5) Error vs. Fault Location testing of Single Stage Fault Location Estimation	(4.5) Error vs. Fault Location testing of Single Stage Fault Location Estimation	
	ABCG ANN	69	
29.	Figure (4.6) Single Stage Fault Location Estimation AB ANN	70	
30.	Figure (4.7) Error vs. Fault Location testing of Single Stage Fault location Estimation	n	
	AB ANN	71	
31.	Figure (4.8) Single Stage Fault Estimation AG ANN	73	
32.	Figure (4.9) Error vs. Fault Location testing of Single Stage Fault location		
	Estimation AG ANN	74	
33.	Figure (4.10) comparison of Error (%) vs. Fault Location Estimation AG ANN between	en the	
	three approaches	78	
34.	Figure (4.11) Comparison between the performances values of the three approach	hes	
		79	
35.	Figure (4.12) Error (%) in fault location in Single Stage CTWB FL using different dat	a	
	windows	81	
36.	Figure (4.13) comparing the performance of Single Stage CTWB FL using different	ure (4.13) comparing the performance of Single Stage CTWB FL using different data	
	windows	81	
37.	Figure (4.14) Flow Chart of designing Double Stage CTWB Fault Locator	82	
38.	Figure (4.15) ANN for Double Stage CTWB Fault Locator	83	
39.	Figure (4.16) Comparison between Single Stage and Double Stage Fault Locator	84	
40.	Figure (4.17) Comparison between Different proposed fault locators	85	
41.	Figure (4.18) Comparison between Scheme 2 and Scheme 3 in different Fault		
	Locations	86	
42.	Figure (4.19) Flowchart for the Proposed Fault Location Algorithm	87	

LIST OF TABLES

1.	Table (2.1) Error (%) For Location 10%, Time Variable Resistance Rf	17
2.	Table (3.1) System (A) General data	39
3.	Table (3.2) System (A) per unit length Transmission Line Parameters	39
4.	Table (3.3) System (B) General data	40
5.	Table (3.4) System (A) Per unit length Transmission Line Parameters	40
6.	Table (3.5) Capability of different modal components to detect the different fault	
	type	44
7.	Table (3.6) Featured sending end fault current model components used for each fau	It type
	to calculate fault location	53
8.	Table (3.7) Start and end of the summation of equation (3.37) in the first 50% of	
	Transmission Line	56
9.	Table (3.8) Start and end of the summation of equation (3.37) in the last 50% of	
	Transmission Line	56
10.	Table (3.9) The summation limits of equation (3.37) at different locations	57
11.	Table (4.1) Inputs and Targets of Fault detection and classification ANN	63
12.	Table (4.2) Training and testing patterns of Fault detection and classification	
	ANN	64
13.	Table (4.3) Testing Outputs of Fault detection and classification ANN	66
14.	Table (4.4) Testing Results of Fault detection and classification ANN	67
15.	Table (4.5) Inputs and Targets of Single Stage Fault Location Estimation ABCG	
	ANN	68
16. Table (4.6) Training and testing patterns of Single Stage Fault Location Estimatio		BCG
	ANN	68
17.	Table (4.7) Testing Results of Single Stage Fault Location Estimation ABCG ANN	69
18.	Table (4.8) Inputs and Targets of Single Stage Fault Location Estimation AB ANN	70
19.	Table (4.9) Training and Testing Patterns of Single Stage Fault Location Estimation	
	AB ANN	71
20.	Table (4.10) Testing Results of Single Stage Fault Location Estimation AB ANN	72
21.	Table (4.11) Inputs and Targets of Single Stage Fault Location Estimation AG ANN	73
22.	Table (4.12) Training and Testing Patterns of Single Stage Fault Location Estimation	
	AG ANN	73
23.	Table (4.13) Testing Results of Single Stage Fault Location Estimation AG ANN	74
24.	Table (4.14) Training and Testing Patterns for ANN for Double Stage CTWB Fault	
	Locator	84