Ain Shams University
Faculty of Pharmacy
Department of Pharmacology and Toxicology

Pharmacological study on the potential effects of Filgrastim in rotenone-induced model of Parkinson's disease in rats

A thesis submitted for the partial fulfillment of requirements of the Master's degree in pharmaceutical sciences
(Pharmacology & Toxicology)

$\mathbf{B}\mathbf{y}$

Mariama Samuel Azmy Guirgus

B.Pharm. Sc., Ain Shams University (2014) Demonstrator of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Under the supervision of

Associate prof. Dr. Mariane George Tadros

Associate Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Reem Nabil Abou El-Naga

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Dr. Esther Tharwat Menze

Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy
Ain Shams University
(2017)

Acknowledgements

First of all, praises and thanks to God for His showers of blessings that enabled me to complete this research.

I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Mariane George Tadros for her continuous support, patience, and priceless advice throughout the experimental research and thesis writing.

I am really grateful to my supervisor, Dr. Reem Nabil Abou El-Naga for her precious support, encouragement, guidance throughout the entire duration of the study and writing of this thesis.

I would also like to deeply thank my supervisor, Dr. Esther Tharwat Menze for her patience, tremendous help, and timely and effective contribution to the research work and thesis preparation.

Faithfully, without the precious support and motivation of all my supervisors, it would not be possible to complete this research.

I would also like to thank Prof. Dr. Adel Bakir, Mr. Mohamed El-Amin, and Mr. Moussa Hussein for their help in performing the histopathological and immunohistochemical staining.

I am thankful to my doctors and colleagues, Dr. Haidy Effat, Christine Nathan, Mina Youssef, Nermine El-Agroudy, and Samar Hosni for their help, especially during the laboratory work.

My sincere thanks also go to all my professors, doctors, and colleagues at the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for the advice and knowledge that really help me in my research.

Last but not least, many deep thanks to all my family: father, no words can express my gratitude for your ultimate support; mother, thanks for your love and emotional support; sister, many thanks for the sleepless nights you spent with me during thesis writing and for all the fun you gave me; brothers, thanks for your support and encouragement.

Mariama Samuel

Contents

	Page
• Introduction	1
1. Parkinson's disease (PD)	1
1.1. History	1
1.2. Epidemiology	1
1.2.1. Worldwide prevalence	
1.2.2. Prevalence in Egypt	2
1.3. Classification of parkinsonism	3
1.4. Clinical manifestations	3
1.4.1. Motor symptoms	
1.4.2. Non-motor symptoms	5
1.5. Diagnosis	
1.6. Pathophysiology	9
1.6.1. Nigral dopaminergic neuronal loss	
1.6.2. Lewy pathology	11
1.7. Pathogenesis	12
1.7.1. Mitochondrial dysfunction, oxidative stress, and	
protein misfolding	12
1.7.2. Neuroinflammation and immune dysfunction	14
1.7.3. Deprivation of neurotrophins	16
1.7.4. Mode of neuronal cell death in PD	17
1.8. Risk factors	18
1.8.1. Genetic factors	18
1.8.2. Environmental factors	19
1.8.3. Epidemiological factors	21
1.8.4. Metabolic factors	22
1.9. Management	23
1.9.1. Dopaminergic pharmacological agents	23
1.9.2. Non-dopaminergic pharmacological agents	26
1.9.3. Neuroprotective strategies as a future trend	27
2. Animal models of PD	
2.1. Neurotoxin-based models	29
2.1.1. 6-Hydroxydopamine	29
2.1.2. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine	30
2.1.3. Paraquat.	31
2.1.4. Rotenone	31
2.2. Genetic models	33
3. Filgrastim	35
3.1. Pharmacodynamics of filgrastim	35
3.1.1. G-CSF as a hematopoietic growth factor	35
3.1.2. G-CSF as a neuroprotective agent.	36
3.1.3. The potential neuroprotective mechanisms and	
involved signaling pathways	39

3.2. Pharmacokinetics of filgrastim	
Aim of the Work	
Materials and Methods	44
I. Experimental design.	44
(A) Preliminary study	44
(B) Mechanistic study	45
II. Materials	47
III. Methods	55
III.1. Behavioral assessments	55
III.1.1. Spontaneous locomotor activity	55
III.1.2. Catalepsy measurement.	55
III.1.3. General movement analysis	55
III.2. Assessment of body weight change	56
III.3. Histopathological examination	57
III.3.1. H&E staining	57
III.3.2. Toluidine blue staining	57
III.4. Immunohistochemical analysis of tyrosine hydroxylase	
and α-synuclein	58
III.5. Striatal dopamine content	
III.6. Assessment of neuroinflammation and microglial	
activation markers	61
III.6.1. Determination of tumor necrosis factor-α levels	61
III.6.2. Determination of interleukin-1β levels	64
III.6.3. Determination of ionized calcium-binding adapter	
molecule-1 immunoreactivity	67
III.7. Assessment of apoptotic markers	68
III.7.1. Measurement of caspase-3 activity	68
III.7.2. Determination of Bax/Bcl-2 ratio.	71
III.8. Assay of ATP levels	72
III.9. Assessment of brain-derived neurotrophic factor levels	74
III.10. Determination of total protein content	77
IV. Statistical analysis	79
• Results	80
• Discussion	138
Summary and Conclusions	147
• References	152
Arabic Summary	

List of Abbreviations

Ab Antibody

AD Alzheimer's disease
AKT Protein kinase B

ALS Amyotrophic lateral sclerosis
ALSFRS ALS functional rating scale

ANOVA Analysis of variance

APAF1 Apoptotic protease-activating factor 1

Bad Bcl-2-associated death promoter

BBB Blood-brain barrier

BDNF Brain-derived neurotrophic factor

BMI Body mass index

CBD Corticobasal degeneration
CNS Central nervous system

COMT Catechol-*O*-methyl transferase

CPR Crude prevalence rate
CSF Cerebrospinal fluid

DA Dopamine

DAT Dopamine transporter

DMSO Dimethyl sulfoxide

EAE Experimental autoimmune encephalomyelitis

ECD Electrochemical detector

EDTA Ethylenediaminetetraacetic acid
ERK Extracellular signal-regulated kinase

¹⁸F-DOPA ¹⁸F-fluorodopa

G-CSF Granulocyte colony-stimulating factor

G-CSFR Granulocyte colony-stimulating factor receptor

GPe Globus pallidus external segment GPi Globus pallidus internal segment GSK-3 β Glycogen synthase kinase-3 β GWAS Genome-wide association studies

H&E Hematoxylin and eosin

HPLC High-performance liquid chromatography

HRP Horseradish peroxidase

i.p. Intraperitoneali.v. Intravenous

Iba-1 Ionized calcium-binding adapter molecule-1

IR Infrared

JAK2 Janus kinase 2
LB Lewy body
L-DOPA Levodopa

LRRK2 Leucine-rich repeat kinase 2

MAO Monoamine oxidase

MAP kinase Mitogen-activated protein kinase MPP⁺ 1-Methyl-4-phenylpyridinium

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRI Magnetic resonance imaging
MSA Multiple system atrophy

NF-κB Nuclear factor-kappa B
NMDA N-methyl-D-aspartate

OD Optical density

6-OHDA 6-Hydroxydopamine

PBS Phosphate-buffered saline

PD Parkinson's disease

PET Positron emission tomography
PI3K Phosphatidylinositol 3-kinase

*p*NA *p*-Nitroaniline

PSP Progressive supranuclear palsy

RBD Rapid eye movement sleep behavior disorder

ROS Reactive oxygen species

s.c. Subcutaneous

SEM Standard error of mean

SNc Substantia nigra pars compacta

List of Abbreviations

SOD Superoxide dismutase

SPECT Single photon emission computed tomography
STAT3 Signal transducer and activator of transcription 3

TH Tyrosine hydroxylase
TLR2 Toll-like receptor 2

TNFR1 Tumor necrosis factor receptor 1

TNF-α Tumor necrosis factor-α

TUNEL Terminal deoxynucleotidyl transferase-mediated

dUTP nick-end labeling

UPS Ubiquitin proteasomal system

VMAT2 Vesicular monoamine transporter-2

WFI Water for injection

List of Figures

<u>Figure</u>	<u>Title</u>	Page
Figure i:	Imbalance between the direct and indirect motor pathways in PD	10
Figure ii:	Inflammatory pathways involved in PD	15
Figure iii:	Sites of action of the current treatment options for PD	26
Figure iv:	Chemical structure of rotenone	31
Figure v:	Neurotoxin-based animal models of PD	33
Figure vi:	Protein structure of filgrastim	35
Figure vii:	The potential neuroprotective mechanisms and involved signaling pathways of G-CSF	41
Figure viii:	Summary of parameters measured in the preliminary and mechanistic studies	46
Figure ix:	Locomotor activity detector	53
Figure x:	Bar (A) and grid (B) used for catalepsy measurement	54

Figure 1:	Standard calibration curve for DA content	60
Figure 2:	Standard calibration curve for TNF- α	63
Figure 3:	Standard calibration curve for IL-1 β	65
Figure 4:	Standard calibration curve for caspase-3	69
Figure 5:	Standard calibration curve for ATP levels	73
Figure 6:	Standard calibration curve for BDNF	76
Figure 7:	Effects of filgrastim on spontaneous locomotor activity in rats	82
Figure 8:	Effects of filgrastim on rotenone-induced catalepsy in rats	85
Figure 9:	Effects of filgrastim on general movement of rats assessed by Ludolph scale scoring system	88
Figure 10:	Effects of filgrastim on rotenone-induced body weight reduction in rats	91
Figure 11:	Representative micrographs of hematoxylin and eosin (H&E)-stained sections of rat midbrains	93
Figure 12:	Representative micrographs of H&E-stained sections of rat striata	94

Figure 13:	Representative micrographs of toluidine blue-stained sections of rat midbrains	96
Figure 14:	Representative micrographs of toluidine blue-stained sections of rat striata	97
Figure 15:	Quantitative analysis of neurodegeneration, calculated as percentage of degenerated neurons in the midbrain and striatum	98
Figure 16:	Representative micrographs showing tyrosine hydroxylase (TH) immunoreactivity in rat midbrains	100
Figure 17:	Representative micrographs showing TH immunoreactivity in rat striata	101
Figure 18:	Effects of filgrastim on TH expression in the midbrains and striata of rotenone-treated rats	103
Figure 19:	Representative micrographs showing α -synuclein immunoreactivity in rat midbrains	105
Figure 20:	Representative micrographs showing α -synuclein immunoreactivity in rat striata	106
Figure 21:	Effects of filgrastim on α -synuclein immunoreactivity in the midbrains and striata of rotenone-treated rats	108

Figure 22:	Effects of filgrastim on rotenone-induced striatal DA depletion in rats	111
Figure 23:	Effects of filgrastim on rotenone-induced increase in TNF- α levels in the midbrains and striata of rats	115
Figure 24:	Effects of filgrastim on midbrain levels of IL-1 β in rotenone-treated rats	118
Figure 25:	Representative micrographs showing Iba-1 immunoreactivity in rat midbrains	120
Figure 26:	Representative micrographs showing Iba-1 immunoreactivity in rat striata	121
Figure 27:	Effects of filgrastim on Iba-1 immunoreactivity in the midbrains and striata of rotenone-treated rats	123
Figure 28:	Effects of filgrastim on caspase-3 activity in the midbrains and striata of rotenone-treated rats	126
Figure 29:	Representative micrographs showing Bax immunoreactivity in rat midbrains and striata	128
Figure 30:	Representative micrographs showing Bcl-2 immunoreactivity in rat midbrains and striata	129
Figure 31:	Effects of filgrastim on Bax/Bcl-2 ratio in the midbrains and striata of rotenone-treated rats	131

Figure 32: Effects of filgrastim on ATP levels in the midbrains and striata of rotenone-treated rats

Figure 33: Effects of filgrastim on rotenone-induced decrease in brain-derived neurotrophic factor (BDNF) concentrations in the midbrain and striatum of rats

List of Tables

<u>Table</u>	<u>Title</u>	Page
Table i:	Targets for neuroprotective therapies in PD	28
Table 1:	Effects of filgrastim on spontaneous locomotor activity in rats	81
Table 2:	Effects of filgrastim on rotenone-induced catalepsy in rats	84
Table 3:	Effects of filgrastim on general movement of rats assessed by Ludolph scale scoring system	87
Table 4:	Effects of filgrastim on rotenone-induced body weight reduction in rats	90
Table 5:	Quantitative image analysis for TH immunostaining in the midbrain and striatum, expressed as the mean area percent $(A\%)$	102
Table 6:	Quantitative image analysis for $\alpha\mbox{-synuclein staining}$ in the midbrain and striatum, expressed as the mean $A\%$	107
Table 7:	Effects of filgrastim on rotenone-induced striatal dopamine (DA) depletion in rats	110
Table 8:	Effects of filgrastim on rotenone-induced increase in TNF- α levels in the midbrains and striata of rats	114

Table 9:	Effects of filgrastim on midbrain levels of IL-1 β in rotenone-treated rats	117
Table 10:	Quantitative image analysis for Iba-1 staining in the midbrain and striatum, expressed as the mean A%	122
Table 11:	Effects of filgrastim on caspase-3 activity in the midbrains and striata of rotenone-treated rats	125
Table 12:	Effects of filgrastim on Bax/Bcl-2 ratio in the midbrains and striata of rotenone-treated rats	130
Table 13:	Effects of filgrastim on ATP levels in the midbrains and striata of rotenone-treated rats	133
Table 14:	Effects of filgrastim on rotenone-induced decrease in brain-derived neurotrophic factor (BDNF) concentrations in the midbrain and striatum of rats	136

Abstract

All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they can neither delay the ongoing neurodegenerative process nor halt the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, displayed neuroprotective effects in many neurodegenerative and neurological diseases. This study aimed to assess the potential neuroprotective effects of filgrastim in rotenone-induced PD in rats; additionally, the potential underlying mechanisms of filgrastim actions were investigated. Rotenone (2 mg/kg/day, 28 days, s.c.) was used to induce PD in adult male Wistar rats. Filgrastim (20 or 40 µg/kg/day, s.c.) treatment was started one day before rotenone administration, continued concomitantly 6 h before rotenone administration, and extended for additional 7 days after the last rotenone dose. The effects of filgrastim on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α -synuclein immunoreactivity were evaluated. Then, the effective filgrastim dose (40 µg/kg/day) was further tested for its potential anti-inflammatory, antiapoptotic, and neurotrophic actions. Filgrastim (40) μg/kg) prevented rotenone-induced behavioral deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly increased TH-positive neurons and reduced α-synuclein immunoreactivity in the midbrains and striata of rotenone-treated rats. These favorable effects were associated with the reduction of rotenone-induced neuroinflammation (a decrease in tumor necrosis factor-α and interleukin-1β levels and ionized calcium-binding adapter molecule-1 immunoreactivity) and inhibition of apoptosis (reduction of caspase-3 activity and Bax/Bcl-2 ratio). Moreover, filgrastim prevented rotenone-induced decline in brain-derived neurotrophic factor and ATP levels. Collectively, these results suggest that filgrastim might be a good candidate for management of PD in rats owing to its anti-inflammatory, antiapoptotic, and neurotrophic effects.

Keywords: Parkinson's disease, Filgrastim, Rotenone, Neuroinflammation, Apoptosis, BDNF