

Ain Shams University
Faculty of Medicine
Anesthesia , Intensive Care , Pain mangement Department

Sodium Disturbances in Neurocritically Ill Patients

Essay Submitted in Partial Fulfillment for Master Degree in General Intensive Care

By
Mahmoud Sayed Mohamed Teleb
M.B., B.Ch.
Faculty of Medicine, Fayoum University

Under supervision of

Prof. Dr. Hoda Omar Mahmoud

Professor of Anesthesia , Intensive Care , Pain mangement
Ain Shams University

Dr. Hanaa Mohamed Abd Allah El-Gendy

Assistant Professor of Anesthesia , Intensive Care , Pain mangement
Ain Shams University

Dr. Abdel Aziz Abd Allah Abdel Aziz

Lecturer of Anesthesia , Intensive Care , Pain mangement
Ain Shams University

Faculty of Medicine Ain Shams University 2017 **Abstract**

Introduction: Sodium is the predominant cation in the extracellular fluid (ECF)

and helps control of blood pressure and regulates the function of muscles and

nerves. The normal serum sodium concentration is between 135 to 145 mEq/L.

Sodium disturbances are frequent and serious complications in neurocritically

ill patients. Hyponatremia is commonly defined as plasma sodium concentration

less sthan 135 mEq/L. It typically develops in the context of an underlying

disruption of free water elimination, usually as a result of syndrome of

inappropriate anti-diuretic hormone secretion (SIADH), cerebral salt wasting

syndrome (CSWS) or renal failure.

Aim of the work: This work is aiming to spot a light on sodium disorders in

neurocriticaly ill patients and its impact on mortality and morbidity in these

patients.

Summary: Disorders of sodium and water homeostasis are common in

critically ill neurologic patients. A high index of suspicion should therefore be

maintained in this patient group. Proper management necessitates an accurate

diagnosis of the type of dysnatremia. Multiple combined mechanisms are

common and must be identified. Reduction of P-[Na+]/plasma tonicity in

hypernatraemia is important, but should not exceed 10 mmol/l/day to reduce

the risk of rebounding brain oedema.

Keywords: Sodium, Neurocritically, CSWS, SIADH

Acknowledgement

For ALLAH the merciful, the compassionate, I kneel to express my gratitude for all the countless gifts I have been offered, including those who gave their hands to enable me to fulfill this work.

Thanks to Prof. Dr Hoda Omar Mahmoud, Prof. of Anaethesia, Intensive Care, Pain management, Ain Shams University, for her continous help and support. I am extremely grateful to her for generous advice and for her guidance and assistance throughout the whole work. I owe her great deal of refining & revising this work through the long time & patience he offered me.

My true appreciation is due to Prof. Dr. Hanaa Mohamed Abd Alla El-Gendy ,Assistant Professor of Anaethesia , Intensive care , Pain management , Ain Shams University for her meticulous supervision, for her kind guidance, valuable instructions, generous help, her sincere efforts and fruitful encouragement.

Moreover, I would like to express my immense gratitude and appreciation to Dr. Abdel Aziz Abd Alla Abdel Aziz, Lecturer of Anaethesia, Intensive care, Pain management, Ain Shams University for his generous help, continuous guidance, advice and supervision in setting up and organizing the plan of this work which, with no doubt paved the way for the production and completion of this work.

Allah blesses them all.

Dr. Mahmoud S. M. Teleb

Contents

Introduction1
Aim of the work4
Chapter I: Normal sodium homeostasis6
Chapter II: Hyponatremia 17
Chapter III: Hypernatremia50
Chapter IV: Sodium disturbances in neurocritical patients71
Summary89
References92
Arabic summary108

List of Abbreviations

ADH	Anti Diuretic hormone
AIDS	Acquired Immuno-defficiency Syndrome
ANP	Atrial Natriuretic peptide
AVP	Arginine Vasopressin
Bun	Blood urea nitrogen
CBC	Complete blood count
CDI	Central Diabetes Incipidus
CNS	Central Nervous System
COPD	Chronic Obstructive Pulmpnary disease
CSWS	Cerebral salt wasting syndrome
CT	Computed Tomography
DI	Diabetes insipidus
ECG	Electrocardiogram
ECV	Extracellular fluid volume
GCS	Glusgow coma score
GFR	Glomerular Filtration Rate
ICV	Intracellular Fluid Volume
ISV	Interstitial fluid Volume
K	Potassium
MRI	Magnetic Resonance Imaging
Na	Sodium

NICU	Neuro-intensive care unit
NNICU	Neurologic/Neurosurgical intensive care unit
ODS	Osmotic Demyelination Syndrome
Posm	Plasma Osmolality
SAH	Subarchnoid haemorrhage.
SG	Specific Gravity
SIADH	Syndrome of inappropriate ADH secretion
TBI	Traumatic brain injury
TBW	Total Body Water
TLC	Total leucocytic count
Uosm	Urine Osmolality

List of Tables

Table No.	Title	Page
Table (1)	Body water compartments in various ages	8
Table (2)	clinical features of hyponatremia	29
Table (3)	Causes of SIADH	31
Table (4)	Diagnostic criteria for the syndrome of inappropriate antidiuretic hormone secretion.	32
Table (5)	Severity of hypernatremia	51
Table (6)	Causes of hypernatremia	52
Table (7)	Central D.I. Diagnosis	63
Table (8)	SIADH vs CSWS	74
Table (9)	SIADH vs CSWS vs DI	75

List of Figures

Figure No.	Title	Page
Figure (1)	Total body water	7
Figure (2)	Distribution of body fluids (in a 70 kg young man)	10
Figure (3)	The daily water transfer across the gastrointestinal barrier in a healthy standard person	11
Figure (4)	The daily water balance in a 70-kg healthy person on a mixed diet	13
Figure (5)	Primary blood volume-pressure control of the renal Na+-excretion.	15
Figure (6)	normal control of plasma osmolality	20
Figure (7)	ADH pathophysiology	23
Figure (8)	Actions of Renin-Angiotensin-Aldosterone axis in the nephron .	24
Figure (9)	Approach to hyponatremia	28
Figure (10)	Clinical, Laboratory Approach to the diagnosis of hyponatremia	35
Figure (11)	Overview of pathophysiology of Hyponatremia symptoms & signs in Multiple organs	39
Figure (12)	Flow chart for management of hyponatremia	42
Figure (13)	Approach to hypernatremia	54
Figure (14)	Clinical and laboratory approach to the diagnosis of hypernatremia	58

Figure (15)	Effects of Hypernatremia on the Brain and Adaptive Responses.	59
Figure (16)	D.I., Water Deprivation Test	64
Figure (17)	CSWS Pathophysiology	74
Figure (18)	Pathophysiologic changes and biochemical findings of SIADH and CSWS	76

Introduction

Introduction

Sodium is the predominant cation in the extracellular fluid (ECF) and helps control of blood pressure and regulates the function of muscles and nerves. The normal serum sodium concentration is between 135 to 145 mEq/L (**Goldman et al. , 2011**)

Sodium disturbances are frequent and serious complications in neurocritically ill patients (**Spatenkova et al., 2013**).

Neurocriticaly ill patients are patients with life-threatening neurological illness that require urgent medical and/or surgical intervention(s) such as postoperative patients, cerebrovascular stroke, traumatic brain/spinal cord injuries, epilepsy, ruptured aneurysms and neurological infections (**Rimawi, 2013**).

Sodium homeostasis is done by various physiological mechanisms regulate sodium intake and output. These processes achieve acute and chronic sodium regulation by simultaneous or sequential changes which take place by activity of salt appetite center and kidneys (Patel, 2009).

Hyponatremia is commonly defined as plasma sodium concentration less than 135 mEq/L . It typically develops in the context of an underlying disruption of free water elimination, usually as a result of syndrome of inappropriate anti-diuretic hormone

secretion (SIADH), cerebral salt wasting syndrome (CSWS) or renal failure (Rudolph et al., 2009).

Hypernatremia is defined as plasma sodium concentration more than 150 mEq/L and common occurrence in elderly patients (Michelis, 2009).

Hypernatremia may delveop either due to an excess fluid loss, inadequate fluid intake or sodium excess. Sodium excess is usually caused by renal failure or drug therapy. Other causes of hypernatremia include: diarrhea, vomiting, burns, sweating, diabetes insipidus, osmotic diuresis and primary hyperaldosteronism(**Spatenkova et al., 2013**).

Hypernatremia was shown to be a significant predictor of neurological intensive care unit mortality compared to hyponatremia but not a predictor of bad outcome upon discharge (**Spatenkova et al., 2013**).

Aim

Of The Work

Aim of the Work:

Aim of the work

his work is aiming to spot a light on sodium disorders in neurocriticaly ill patients and its impact on mortality and morbidity in these patients.

Chapter I

Normal Sodium Homeostasis