

Women's College for Arts Science and Education Zoology Department

VANADIUM AS AN ANTIOXIDANT AND DIABETES MELLITUS IN ADULT MALE ALBINO RATS.

A thesis submitted
In partial fulfillment of the requirements for
the degree of (M. Sc.) in Zoology

By

Hanaa Khairy Mohamed

(B.Sc.) administrator, Zoology Department, Women's College for Arts, Science & Education Ain Shams University

Supervised By Prof. Dr

Sanaa M. Rifaat Wahba

Professor of Histology & Histochemistry
Zoology Department,
Women's College for Arts, science & Education,
Ain Shams University

Dr.

Walaa Ahmed El- Nahrawy Assist.Prof. Physiology, Zoology Department Women's College, Ain Shams University Dr.

Rabab El said Abd El Wahab Lecture of Ecology Veterinary Medicine, Suez Canal University

(2012)

Dedication

TO my Husband,

TO my Father,

TO my Mother,

TO my brothers, And TO my sister,

Wishing them all the best.

QUALIFICATIONS

Name : Hanaa Khairy Mohamed

Scientific Degree: B.Sc

Department : Zoology

College : Women College for Arts,

Science & Education

University: Ain Shams University

Graduation year : 2006

Courses

Courses studied by Candidate in Partial Fulfillment of the Requirement for the Degree of M.Sc.

- 1. Physiology
- 2. Histology
- 3. Ecology
- 4. Histopathology
- 5. Statistical analysis
- 6. English language
- 7. Computer science

APPROVAL SHEET

Name: Hanaa Khairy Mohamed

Title: Vanadium as an Antioxidant and Diabetes

Mellitus (NIDDM) in Adult Male Albino Rats.

Scientific Degree: MS.C

Board of Scientific Supervision

Prof. Dr. Sanaa M. Rifaat Wahba

Prof .of Histology & Histochemistry
Department of Zoology,
Women College for Arts, Science & Education,
Ain Shams University

Dr. Walaa Ahmed El-Nahrawy

Assist.Prof. Physiology, Department of Zoology, Women's College for Arts, Science & Education Ain Shams University

Dr. Rabab El said Abd El Wahab

Veterinary Medicine, Sueze Canal University

2012

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to *ALLAH*, the most kind and most merciful.

No, words can be sufficient to express my deepest gratitude to *Prof. Dr. Sanaa M. Rifaat Wahba*, Professor of Histology and Histochemistry, Department of Zoology, Women's College, Ain Shams University, for her close supervision and continuous assistance during the investigation. To her I owe a great deal for her sincere guidance. I will never forget her unlimited help.

I am greatly obliged to *Dr.Walaa Ahmed Moustafa*, Assistant Professor of Physiology, Department of Zoology, Women's College, Ain Shams University .To her I am greatly indebted for suggesting and planning the subject, valuable advice, immeasurable time given and for reading and criticizing the manuscript.

I would like also to express my sincere gratitude and appreciation to *Dr.Rabab El said Abd El Wahab*, Lecturer of Ecology Veterinary Medicine, Suez Canal University for her guidance in this work.

The present study is an attempt to investigate the complications of diabetes mellitus on some physiological parameters and histological studies of the pancreas tissue of male albino rats.

This work also evaluates the therapeutic role of sodium orthovanadium on non-diabetic and diabetic rats to minimize hazardous effects of diabetes mellitus.

Results were obtained from the treated experimental animal groups and compared with the corresponding normal control rat group.

The present findings were further discussed in view of relevant available literature in similar fields of studies.

The following parameters were estimated:-Carbohydrate metabolism, kidney function tests, lipid profile and lipid peroxidation.

Pancreas of albino rats was chosen for the histological studies to elucidate the impact of diabetes mellitus on pancreas tissue and the ameliorating effects of vanadium.

In the light of the obtained results, conclusions were deducted and suggestions for further studies were introduced.

	Page
ABSTRACT	
LIST OF TABLES	i
LIST OF FIGURES	iii
LIST OF ABBREVIATION	vii
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	5
A- Diabetes mellitus	5
B- Streptozotocin (STZ)	7
1-Effect of Streptozotocin on pancreas histopathology	8
2-Effect of Streptozotocin on biochemical parameters	9
a-Effect of Streptozotocin on the serum glucose concentration	9
b-Effect of Streptozotocin on the glycosylated haemoglobin (HbA _{1C}) level	10
c-Effect of Streptozotocin on C-peptide level	11
d-Effect of Streptozotocin on the lipid profile	12
e-Effect of Streptozotocin on lipid peroxidation malondialdhyde (MDA)	13
f-Effect of Streptozotocin on liver glycogen content	14
g-Effect of Streptozotocin on kidney function tests	14
C- Free radicals and antioxidants 1- Free radicals	16 16

a-Biology and biochemistry of oxygen free radicals	16
b-Types of free radicals	16
c-Free radical and diabetes mellitus	18
2-Antioxidants	22
D- Vanadium as an antioxidant	22
1-Source of vanadium	24
2- Physiological role of vanadium	24
3- Absorption and excretion of vanadium	26
4- Sodium orthovanadate	27
5-Vanadium and diabetes	27
6-Effect of Vanadium on the pancreas histopathology	30
MATERIAL AND METHODS	32
Material	32
A-Experimental Animals	32
B-Experimental Drugs and Antioxidants	32
Methods	34
A-Housing of Experimental Animals	34
B- Drug and Antioxidant Administration	34
C-Tissue Sampling and Histological Studies	34
D-Biochemical methods	35
a -Carbohydrate metabolism	35
1- Determination of serum glucose concentration	35
2- Determination of blood glycosylated haemoglobin (HbA _{1C}) level	36
3- Determination of serum C-peptide level	37
4- Determination of liver glycogen content	38
b-Kidney function tests	38
1-Determination of serum urea	38
2- Determination of serum creatinine level	39

c -Lipid profile	40
1-Determination of serum cholesterol level	40
2-Determination of serum triglyceride (TG) level	42
3-Determination of serum high density lipoprotein (HDL) level	43
4-Determination of serum low density lipoprotein (LDL) level	45
5-Determination of serum very low density lipoprotein (VLDL) level	45
d-Lipid peroxidation	45
1-Determination of lipid peroxidation malondialdhyde (MDA)	45
E -Statistical Analysis	46
F -Experimental design	47
RESULTS	50
A-Histological studies	50
1-Pancreas of rats from control groups	50
2- Pancreas of rats from diabetic groups	59
3- Pancreas of rats from treated groups	64
B-Biochemical methods	71
a-Carbohydrate metabolism	71
1- Serum glucose concentration	71
2- Blood glycosylated haemoglobin (HbA _{1C}) level	74
3- Serum C-peptide level	77
4- Liver glycogen content	80
b-Kidney function tests	83
1-Serum urea level	83
2-Serum creatinine level	86
c-Lipid profile tests	89
1- Serum cholesterol level	89
2- Serum triglyceride (TG) level	92
3- Serum high density lipoprotein (HDL) level	95
4- Serum low density lipoprotein (LDL) level	98
5- Serum very low density lipoprotein (VLDL)	101

Contents

d-Lipid peroxidation	104
1-Tissue lipid peroxidation malondialdhyde (MDA)	104
DISCUSSION AND CONCLUSION	107
SUMMARY	128
REFERENCES	131
ARABIC SUMMARY	

		Page
Table (1):	Types of free radicals with radicals biological relevance.	20
Table (2):	Types of antioxidants.	25
Table (3):	Experimental design and distribution.	49
Table (4):	Effect of sodium orthovanadate on serum glucose concentration in non-diabetic and diabetic rats at various time intervals.	72
Table (5):	Effect of sodium orthovanadate on blood glycosylated haemoglobin (HbA_{1C}) level in non-diabetic and diabetic rats at various time intervals	75
Table (6):	Effect of sodium orthovanadate on serum c- peptide level in non-diabetic and diabetic rats at various time intervals.	78
Table (7):	Effect of sodium orthovanadate on liver glycogen content non- diabetic and diabetic rats at various time intervals.	81
Table (8):	Effect of sodium orthovanadate on serum urea level in non-diabetic and diabetic rats at various time intervals.	84

Table (9):	creatinine level in non-diabetic and diabetic rats at various time intervals.	87
Table (10):	Effect of sodium orthovanadate on serum cholesterol level in non-diabetic and diabetic rats at various time intervals.	90
Table (11):	Effect of sodium orthovanadate on serum triglyceride (TG) level in non-diabetic and diabetic rats at various time intervals.	93
Table (12):	Effect of sodium orthovanadate on serum high density lipoprotein (HDL) level in non-diabetic and diabetic rats at various time intervals.	96
Table (13):	Effect of sodium orthovanadate on serum low density lipoprotein (LDL) level in non-diabetic and diabetic rats at various time intervals.	99
Table (14):	Effect of sodium orthovanadate on serum very low density lipoprotein (VLDL) level in non-diabetic and diabetic rats at various time intervals.	102
Table (15):	Effect of sodium orthovanadate on tissue lipid peroxidation malondaldhyde (MDA level in non-diabetic and diabetic rats at various time intervals.	105

Figures		Page
Fig. (1):	Histogram showing oxidative stress-induced diseases in humans.	21
Fig. (2):	Histogram showing biochemical mechanisms by which a rapid increase in blood glucose concentration could induce oxidative stress.	23
Fig. (3):	Histogram showing chemical structure of streptozotocin.	32
Fig.(4):	Histogram showing chemical structure of sodium orthovanadate.	33
Fig. (5):	Photomicrograph of a section of the pancreas of normal control rat.	54
Fig.(6):	Photomicrograph of a section of the pancreas of normal control rat after 60 th day.	54
Fig.(7):	Photomicrograph of a section of the pancreas of non- diabetic sodium orthovanadate (low dose 50 mg/kg b.wt) after 15 th day.	56
Fig. (8):	Photomicrograph of a section of the pancreas of non- diabetic sodium orthovanadate (low dose 50 mg/kg b.wt) after 60 th day.	56