

Ain Shams University University Collage of Women for Arts, Science and Education

Structural characterization and physical properties of ternary $Se_{75}Te_{25\text{-}x}Ge_x \ thin \ films$ A Thesis

Submitted To University Collage of Women for Arts, Science and Education - Ain Shams University

For The Ph.D Degree in (Physics)
By

Nahed Hamada Ibrahem Teleb

Supervising Committee

Prof. Dr.

Prof.Dr.

Hamdia Ibrahim Abd-Elhamid Zayed Prof. of Solid State Physics Physics Department University Collage of Women for Arts, Science and Education

Prof.Dr.

Gamal Bakr Hassan Sakr Prof. of Solid State Physics Facility of Education Facility of Education Ain shams University Siham mahmoud salem
Prof. of Solid State Physics
Electron Microscope and
Thin Films Department.
Physics Division
National Research Centre
Prof.Dr

Abdel-Rahman Mohamed salem Prof of Solid State Physics Electtron Microscope and thin films Department physics Division National research center

Contents

CONTENTS

	ACKNOWLEDGMENTS	V
	LIST OF FIGURES	VI
	LIST OF TABLES	XII
	ABSTRACT	XIII
	INTRODUCTION	XV
	CHAPTERI	
	LITERATURE SURVEY	
1.1	Literatures survey Se-Te	1
1.2	Literatures survey Se-Te-Ge	16
	CHAPTER II	
	EXPERIMENTAL TECHNIQUES	
2.1	Preparation of the bulk ingot material	31
2.2	Pulsed Laser Deposition [PLD]	32
2.2.1	Mechanism of PLD	33
2.2.2	Substrates Preparation	36
2.2.3	Preparation of Se ₇₅ Te _{25-x} Ge _x thin films	36
2.3	Characterization Techniques	38
2.3.1	Film thickness measurements	38
2.3.2	X-ray Diffraction [XRD]	39
2.3.2a	Fundamental Principles of X-ray Diffraction	39
2.3.2b	Bragg law	39

I

2.3.2c	Determination of Unit Cell Dimension	40
2.3.2d	Crystallite Size Determination from Line Broadening	40
2.3.3	Differential scanning calorimetry	41
2.4	Transmission electron microscopy	43
2.5a	Scanning Electron microscopy	47
2.5b	X-ray microanalysis	50
2.6	Atomic Force Microscope	51
2.7	Spectrophotometric measurements	54
2.8	Electrical measurements	55
2.8.1	DC conductivity measurements	55
	Chapter III	
	Structural characterization	
3.1	Structure Characterization of the Prepared Se ₇₅ Te ₂₅ . _x Ge _x Powdery Samples	60
3.1.1	X-ray diffraction of the ternaries Se ₇₅ Te _{25-x} Ge _x compositions	60
3.1.2	Chemical composition of the prepared $Se_{75}Te_{25-x}Ge_x$ Powdery Samples	61
3.1.3	Thermal stability of the ternary $Se_{75}Te_{25-x}Ge_x$	64
21-13	amorphous system	-
3.1.4	Coordination number, mean bond energy, and heat of	70

	atomization for the ternary Se ₇₅ Te _{25-x} Ge _x system	
3.2	Structure characterization of the deposited Se ₇₅ Te _{25-x} Ge _x ternary films	82
3.2.1	Chemical compositions of as-deposited Se ₇₅ Te _{25-x} Ge _x films Samples	82
3.2.2	X-ray diffraction analysis of the as-deposited films	86
3.2.3	Heat treatment of the deposited Se ₇₅ Te _{25-x} Ge _x films	87
3.2.4a	Transmission electron microscope	92
3.2.4b	Atomic force microscope	94
	ChapterIV	
	Optical properties	
4.1	Transmission and Reflection spectra Se ₇₅ Te _{25-x} Ge _x thin films	97
4.2	Optical constants of Se ₇₅ Te _{25-x} Ge _x thin films ternary system	100
4.2.1	Refractive index dispersion analysis of ternary $Se_{75}Te_{25-x}Ge_x$ thin films	111
4.2.2	Nonlinear refractive index of Se ₇₅ Te _{25-x} Ge _x ternary system	115
4.2.3	Determination of the dielectric constants for the ternary $Se_{75}Te_{25-x}Ge_x$ thin films	117
4.2.4	Absorption coefficient, and optical band gap of Se ₇₅ Te _{25-x} Ge _x ternary system	123
4.3	Optical dielectric constant for the ternary $Se_{50}Te_{50-x}Ge_x$ system films and other related functions	129

4.4	Correlation between the optical band gap, E_g and cohsive energy of the deposited $Se_{75}Te_{25-x}Ge_x$ thin	138
4.5	films Correlation between the optical band gap, E_g and refractive index, n	141
4.6	Effect of thermal annealing on the optical properties of the deposited Se ₇₅ Te _{25-x} Ge _x thin films ternary system	143
4.6.1	Analysis the absorption coefficient of the annealed Se_{75} . $_xTe_{25}Ge_x$ thin films	149
4.6.2	Refractive index dispersion analysis of the annealed Se_{75} . $_xTe_{25}Ge_x$ thin films	152
	Chapter V Electrical properties	
5.1	Room temperature current-voltage characteristic of Ag similar electrodes	156
5.2	Temperature dependence of the electrical film resistance of $Se_{75}Te_{25-x}Ge_x$ thin films and the activation energy	159
5.3	Room temperature current-voltage characteristic of Au/ Se ₇₅ Te _{25-x} Ge _x /In dissimilar electrodes	169
	Conclusions	177
	Refrences	181

Acknowledgment

ACKNOWLEDGEMENT

伊伊伊伊

H

F)

Firstly I would like to express my sincere thanking to my advisor Prof.siham Mahmoud Mohamed Salem, Professor of Solid State Physics, Electron Microscope and Thin Films Department, Physics Division, National Research Centre (NRC) for the continuous support of my Ph.D study and related research, for the patience, motivation and immense knowledge, My deepest appreciation to Prof. Dr Hamdia Abd- Elhamid Ibrahim Zayed Prof. of Solid State Physics, Physics Department, University Collage of Women for Arts, Science and Education, Ain Shams University for her extraordinary support in this thesis. Also I would like to express my special thanks to prof. Abdelrahman Mohamed salem Professor of Solid State Physics, Electron Microscope and Thin Films Department, Physics Division, National Research Centre (NRC) for his guidance which helped me in all the time of research and writing of thesis. I would also like to thank professor Gamal Bakr saker professor of Solid State physics Facility of Education Ain Shams University for his support.

Last but not the least; I would like to thank my family, my parents, my husband and my brother and sisters for supporting me spiritually throughout writing this thesis and in my life in general.

List of Figures

List of Figures

		page
Fig.2.1	Schematic represents the laser target interaction processes.	36
Fig.2.2	schematic diagram of the Pulsed Laser Deposition Technique.	37
Fig.2.3	Ultrafast Femto-second Laser System.	37
Fig.2.4	Ultrahigh Vacuum System.	38
Fig.2.5	Dektak ³ St device measure the thicknesses of deposited films.	39
Fig.2.6	Panalytical – Empyrean, X-ray Diffractometer.	41
Fig.2.7	shows the DSC instrument used in measurements.	43
Fig.2.8a	Illustrates the TEM configuration system.	44
Fig.2.8b	Photograph of TEM (Type JEOL JEM-1230).	44
Fig.2.9	Schematic diagram of a scanning electron microscope.	49
Fig.2.10(a,b)	Different interactions of an electron beam (PE) with sample. $BSE = backscattered$ electron, $SE = secondary$ electron, $X = x$ -ray, $AE = auger$ electron.	51
Fig.2.11	Line diagram of a typical Atomic Force microscope.	53
Fig.2.12	show the front view of scanning probe microscope	54
Fig.2.13	A photograph of the double beam spectrophotometer.	55
Fig.2.14	Sputter coater $3\Delta L$ -TEC/SCD050.	56
Fig.2.15	Two types of electrodes.	56
Fig.2.16	cell for mesuring the voltage current.	56
Fig.2.17(a,b)	(a) Schematic diagram of the set-up for measuring the film resistance and (b) Film on substrate	57
Fig.2.18	A schematic diagram illustrating the electrical measuring circuit, a- thermocouple, B- pyrex cell, C- DC power supply, E-electrometer, M- digital multimeter and S- coated substrate and connected with temperature controller.	58