

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.999

Cairo University Institute of African Research & Studies Department of Natural Resources

SURVEY AND BIOLOGICAL STUDIES ON SOME AFRICAN MITES IN SOME DRY HABITATS

By

NAHLA ALI IBRAHIM ABD-EL-AZEIM

B.Sc. (Agric.), Cairo University, 1987 Diploma of African Studies, 1993

THESIS

Submitted for the Degree of Master of African Studies
Natural Resources
(Animal Resources)

Supervisors

Prof. Wafai Z.A. Mikhail Professor of Animal Ecology

Dept. of Natural Resources
Inst. of African Res. & Studies
Cairo University

Prof. Mahmoud E. El-Naggar

Director of
Plant Protection Res. Institute
Agricultural Research Center
Ministry of Agriculture

APPROVAL SHEET

Student Name: NAHLA ALI IBRAHIM ABD-EL-AZEIM
Title: SURVEY AND BIOLOGICAL STUDIES ON SOME
AFRICAN MITES IN SOME DRY HABITATS

Approved by:

- 1- Prof.Dr. Abd El-Sattar M. Metwally Head of Agric. Zoology & Nematology Dept., Fac. of Agric., Al-Azhar Univ.
- 2- Prof.Dr. El-Sayed A.K. Abou-Hegab Professor of Zoology, Faculty of Science, Cairo University
- 3- Prof.Dr. Mahmoud E. El-Naggar
 Head of Plant Protection Research Institute
- 4- Prof.Dr. Wafai Z.A. Mikhail
 Professor of Animal Ecology, Institute of
 African Research Studies, Cairo Univ.

A. M. Metwally

Mahmored EL- Nagga

Date 14/9/1999

ACKNOWLEDGEMENT

The writeress wishes to express her deepest thanks and gratitude to **Prof.Dr. Samir Ibrahim Ghabbour**, Professor of Animal Ecology, Institute of African Research & Studies, Cairo University, for his encouragement, valuable criticism and advice.

Deepest gratitude and sincere thanks particularly are also due to **Prof.Dr. Wafai Z.A. Mikhail**, Professor of Animal Ecology, for his supervision, encouragement, reviewing, criticism the manuscript, unlimited help and continuous advice, valuable efforts and help during the present investigation.

I am deepest particularly grateful and very thankful to **Prof.Dr. Mahmoud El-Sayed El-Naggar**, Professor of Acarology, and Director of Plant Protection Research Institute, Agricultural Research Center, for his supervision, encouragement, valuable and useful suggestion, reviewing, advice and criticizing the manuscript, technical guidance, facilities offered by him and unlimited help during the work of this study.

Thanks are also due to Prof. Yves COINEAU, Museum National d'Histoire Naturelle, Paris, for providing rare and valuable references.

Great thanks also to extend to my father, husband and all members of my family, for their helping, kind assistance and suppurated in this study.

CONTENTS

		Page
]-	INTRODUCTION	1
II-	REVIEW OF LITERATURE	3
	2.1- Survey Studies	3
	2.2- Biological Studies	13
III-	MATERIAL AND METHODS	26
	1- Survey	26
	2- Biological Studies	28
	3- Statistical Analysis	29
IV-	RESULTS	31
	1- Survey	31
	2- Key to collected mites	61
	3- Biological studies	115
	3.A- Description of different stages	115
	3.B- Biological aspects	135
V-	DISCUSSION	144
VI-	SUMMARY .	149
VII-	REFERENCES	152
III-	ARABIC SUMMARY	, 52

LIST OF TABLES

Table		Page
No.		^ 6
(1)	Stored products, manure and house dust mites in Giza	
(-)	Governorate	36
(2)	Number of mite species collected from different habitats from	
	El-Conaiessa	39
(3)	Number of mite species collected from different habitats from	
	Warraq El-Arab	42
(4)	Number of mite species collected from different habitats from	
	Imbaba	45
(5)	Number of mite species collected from different habitats from	
	Talbeia	48
(6)	Number of mite species collected from different localities	51
(7)	Number of mite species collected from different habitats	56
(8)	Number of genera, species collected from different localities	60
(9)	Biology of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 28±1°C and 70±5 % R.H.	137
(10)	Biology of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 25±1°C and 70±5 % R.H.	139
(11)	Biology of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 20±1°C and 70±5 % R.H.	140
(12)	Duration of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 28±1°C and 70±5 % R.H.	141
(13)	Duration of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 25±1°C and 70±5 % R.H.	142
(14)	Duration of mite species Tyrophagus putrescentiae when fed	
	on powder of hazel nut at 20±1°C and 70±5 % R.H.	143

LIST OF FIGURES

Fig. No.		Page
(1)	Berlese/Tullgren funnel	27
(2)	Total number of individuals and number of mite species	
	collected from different habitats of El-Conaiessa area	41
(3)	Total number of individuals and number of mite species	.,
	collected from different habitats of Warraq El-Arab area	44
(4)	Total number of individuals and number of mite species	• •
	collected from different habitats of Imbaba area	47
(5)	Total number of individuals and number of mite species	.,
	collected from different habitats of Talbeia area	50
(6)	Number of individual, species and genera of mites collected	•
	from El-Conaiessa, Warraq El-Arab, Imbaba and Talbeia	53
(7)	Graphical representation of the application of CA and AHC	
	methods to data of Table (6)	55
(8)	Number of predaceous, predators and miscellaneous feeding	
	of mite species of the present study	59
(9)	Androlaelaps aegypticus Hafez, El-Badry & Nasr female,	
	dorsum and ventrum	73
(10)	Hypoaspis miles Berlese female, dorsum and ventrum	74
(11)	Ololaelaps bregetovae Shereef & Soliman female, dorsum and	
	ventrum	75
(12)	Macrocheles muscaedomesticae (Scopoli) female, dorsum and	
	ventrum	76
(13)	Macrocheles matrius (Hull) female, dorsum and ventrum	7 7
(14)	Kleemannia plumosus (Oudemans) female, dorsum and	
	ventrum	78
(15)	Ameroseius aegypticus El-Badry, Nasr & Hafez female,	
	dorsum and ventrum	79
(16)	Lasioseius bispinosus Evans female, dorsum and ventrum	80
(17)	Blattisocius tarsalis (Berlese) female, dorsum and ventrum	81
(18)	Blattisocius keegani Fox male, dorsum and ventrum	82

LIST OF FIGURES: Continued

Fig.		Dog
No.		Page
(19)	Urobpvella krantzi Zaher & Afifi female, dorsum and ventrum	83
(20)	Cheyletus malaccensis Oudemans female, dorsum	84
(21)	Cheyletus aversor Rohdendrof female, dorsum	85
(22)	Acaropsellina sollers Rohdendrof female, dorsum and ventrim	86
(23)	Acaropsellina socta (Berlese) male, dorsum and ventrum	87
(24)	Hemicheyletia bakeri (Ehara) female, dorsum	88
(25)	Pseudocunaxa simplex (Ewin) female, dorsum and palp	89
(26)	Cunaxa capreolus (Berlese) female, dorsum and ventrum	90
(27)	Spinibdella bifurcata Atyeo female, dorsum	91
(28)	Raphignathus ehari Zaher & Gomaa female, dorsum and ventrum	92
(29)	Raphignathus gracilis (Rack) female, dorsum and ventrum	93
(30)	Stigmaeus africanus Soliman & Gomaa female, dorsum and ventrum	94
(31)	Tydeus californicus (Banks) female, dorsum	95
(32)	Pyemotes herfsi (Oudemans) female, dorsum and ventrum	96
(33)	Pyemotes tritici (Lagrez-Fossole & Montane) female, dorsum and ventrum)	97
(34)	Stenotarsonemus sayedi Zaher & Kandeel male, dorsum and	91
()	ventrum	98
(35)	Tyrophagus putrescentiae (Schrank) male, dorsum	99
(36)	Tyrophagus lini (Oudemans) male, dorsum	100
(37)	Tyrophagus zachvatkini Volgin male, dorsum	101
(38)	Acarus siro Linnaeus male, dorsum	102
(39)	Caloglyphus beta Attiah female, dorsum	103
(40)	Caloglyphus rhizoglyphoides (Zachvatkin) male, dorsum and	100
	ventrum	104
(41)	Rhizoglyphus robini (Fumoze & Robin) male, dorsum	105
(42)	Ctenoglyphus hughesi Attiah male, dorsum	106

LIST OF FIGURES: Continued

Fig.		Dogo
No.		Page
(43)	Chortoglyphus arcuatus (Troupeau) male, dorsum	107
(44)	Glycyphagus aegyptiacus Attiah female, dorsum	108
(45)	Glycyphagus ornatus (Kramer) male, dorsum	109
(46)	Dermatophagoides farinae Hughes female, ventrum	110
(47)	Dermatophagoides evansi (Fain, Hughes & Johnston) female,	
	ventrum	111
(48)	Dermatophagoides rwandae (Fain) female, dorsum	112
(49)	Dermatophagoides brasiliensis female, ventrum	113
(50)	Niloppia sticta Popp. dorsum and ventrum	114
(51)	Tyrophagus putrescentiae (Egg)	116
(52)	Tyrophagus putrescentiae, larva dorsum	117
(53)	Tyrophagus putrescentiae, larva ventrum	118
(54)	Tyrophagus putrescentiae, larva legs I-III	119
(55)	Tyrophagus putrescentiae, protonymph dorsum	121
(56)	Tyrophagus putrescentiae, protonymph ventrum	122
(57)	Tyrophagus putrescentiae; protonymph legs I-IV	123
(58)	Tyrophagus putrescentiae, deutonymph dorsum	124
(59)	Tyrophagus putrescentiae, deutonymph ventrum	125
(60)	Tyrophagus putrescentiae, deutonymph legs I-IV	126
(61)	Tyrophagus putrescentiae, female gnathosoma	128
(62)	Tyrophagus putrescentiae, female dorsum and supracoxal seta	129
(63)	Tyrophagus putrescentiae, female ventrum	130
(64)	Tyrophagus putrescentiae, female legs I-IV	131
(65)	Tyrophagus putrescentiae, male dorsum	132
(66)	Tyrophagus putrescentiae, male ventrum	133
(67)	Tyrophagus putrescentiae, male legs I-IV	134

INTRODUCTION

I-INTRODUCTION

Mites associated with stored products are of great economic importance. They are causing some serious variable degree of damage to such of stored products. They can consume large amounts of stored products,, also, contaminate food with their bodies and excretions. During favourable conditions, mite populations associated with stored product may markedly increase. Accordingly, these stored products becomes unsuitable for human as well as animal consumption. Moreover, these mites may cause various serious diseases to store-keeper persons.

Many of these mites are capable of infesting some seeds, biscuits, bulbs, cheese and tobacco as well as some leguminous plants in fields. Unpleasant taste and smell of many stored products may produced, causing deterioration of these stored products which become unacceptable and unattractive to human and livestock. Mites cause some digestive troubles and dermatitis.

On the other hand, many species of mites, specially the astigmatid mites, are considered one of the main causal agent which transmitt diseases of agricultural crops.

Mites have been collected from houses, furniture, and beds over the years. House dust mites have always been plentiful in most homes, just as they now are, and that the apparent change in the acarine fauna of homes is primarily caused by the way in which the contents of vacuum cleaners are now examined. The fact that house dust-sensitive people responded to extracts of house dust from many parts of the world suggested to many allergists that some specific universally present allergenic agent must be present in houses on a global scale. In other words, mites may somehow concentrate dust allergens.