Detection of Subclinical Left Ventricular Dysfunction in Hypertensive Patients Using Speckle Tracking Echocardiography

Thesis

Submitted for partial fulfillment of master degree of cardiology

\mathbf{BY}

Reham Atef Mohamed EL Okl

M.B., B.C.H

Supervisors

Professor Dr. Amal MohamedAyoub

Professor of Cardiology

AinShams University

Dr. Viola William Keddeas

Fellow of Cardiology

AinShams University

Dr. Yasmin Abdel Razek Esmael

Lecturer of Cardiology

AinShams University

Faculty of Medicine

AinShams University (2015)

Acknowledgements

I always feel deeply indebted to my God, the real guide and the real supporter.

Really, the accomplishment of this work was due to so many contributors, without the valuable, genuine guidance, sincere and helpful participation; this study would not be achieved.

No words can describe my deep gratitude to Doctor Amal Mohamed Ayoub; Professor of cardiology; Ain Shams University, she was the person who closely supervised the progress of our work with great interest and without her continuous guidance and unlimited help, this work would not come to light

I would like to express my profound thanks, sincere and deep gratitude to Doctor *Viola William*, Fellow of cardiology Ain shams University for her valuable and generous support she was the person who really did this work. And follow up its progress.

I am particularly indebted to Doctor *Yasmine Abd Al Razek*, Lecturer of cardiology, Ain Shams University for her excellent collaboration and suggestions which have been of great help in the preparation of this work.

Finally, with great pleasure I wish to thank all the staff members of the Cardiology Department of Ain University Hospital especially Dr *Osama Ali Diab*, Assistant professor of cardiology, Ain Shams University for his kind and sincere help in the statistical analysis. He really made a great effort in analyzing the data of our study.

A special thanks for my father and the soul of my mother for their great support to me all the time, continuous guidance and unlimited help.

Reham Atef

Contents

IT.	EM	Page
Ac	cknowledgment	I
Li	st of abbreviations	II
Li	st of tables	V
Li	st of figures	VIII
Int	roduction	1
Ai	ms of the work	3
Re	eview of literature:	(4-85)
*	Chapter Hypertension	4
*	Chapter2: LV Geometric Adaptation in Hypertensive	41
*	Chapter 3: Diastolic Dysfunction in hypertensive patient	ts50
*	Chapter4:LV Systolic Dysfunction in	Hypertensive
	Patient	62
*	Chapter5: Detection of Systolic LV dysfunction by	2-D Speckle
	tracking Echocardiography	70
Pa	tients and methods	86
Re	esults	111
Di	scussion	140
Stı	udy Conclusions	150
lin	nitations	151
Re	ecommendations	152
Su	mmary	153
Re	ferences	157
Ar	abic summary	XI-XII

LIST OF ABBREVIATION

	T
A	Atrial kick mitral inflow velocity
A`	Atrial annular velocity
ABI	Ankle brachial index
ABP	Arterial blood pressure
ABPM	Ambulatory Blood Pressure Monitoring
ACEI	Angiotensin convertor enzyme inhibitor
ARBs	Angiotensin convertor enzyme inhibitor
ASE	American Society of Echocardiography
BB	Beta blockers
BMI	Body mass index
BP	Blood pressure
BSA	Body surface area
CHD	Cardiovascular heart disease
CI	Confidence interval
CKD	Chronic kidney disease
DBP	Diastolic Blood Pressure
DD	Diasdtolic dysfunction
DT	Deceleration time
E	Early mitral inflow velocity
E`	Early diastolic annular velocity
EAE	European Association of Echocardiography.
EAS	European atherosclerosis Society
EAT	Epicardial atrial thickness
ECG	Electrocardiogram
ED	End Diastolic
EDV	End diastolic volume
EF	Ejection fraction
eGFR	Estimated glomerular filteration rate
ES	End systolic
ESRD	End stage renal disease

ESV	End systolic volume
GFR	Glomerular filtration rate
GLS	Global longitudinal strain
H	Height in cm
HF	Heart failure
HFpEF	Heart failure with preserved ejection fraction
HTN	Hypertension
IDDM	Insulin dependent diabetes mellitus
ISH	Ischemic heart disease
IVRT	Isovolumetric relaxation period
L	Length
LA	left atrium
L_{o}	Intial length
LS	Longitudinal strain
Lt	Length in a given time
LV	Left ventricle
LVH	left ventricular hypertrophy
LVIDd	LV internal dimensions in diastole
LVIDs	LV internal dimensions in systole
LVMI	Left Ventricular mass index
MAPSE	Mitral annular plane systolic excursion
MI	Myocardial infarction
MRI	Magnetic resonance imaging
NIDDM	Non-Insulin dependent diabetes mellitus
OD	Organ damage
OR	Odds ratio
PAD	Peripheral arterial disease
PWT	Posterior wall thickness
PWV	Pulsed wave velocity
r	Radius
RAS	Renin angiotensin system
RCTs	Randomized controlled trials
RF	Risk factors
ROI	Region of interest
RSWMA	Resting segmental wall motion abnormality
TAN 4 1 14 17 1	resums segmental wan motion asnormanty

S	Systolic velocity of mitral annulus
SBP	Systolic blood pressure
SCORE	Systemic coronary risk evaluation
SD	Standard deviation
SPSS	Statistical package for social science
SR	Strain rate
STE	Speckle tracking echocardiography
SWT	Septal wall thickness
T	Tension in LV wall
TDI	Tissue Doppler imaging
V	Velocity
Vp	Velocity of propagation
Vs.	versus
\mathbf{W}	Weight in kg
έ	Strain rate

List of figures

-	Figure 1. Stratification of total CV risk in categories of
	low, moderate, high and very high risk according to SBP
	and DBP and prevalence of RFs, asymptomatic OD,
	diabetes, CKD stage or symptomatic CVDpage11.
-	Figure 2.Initiation of lifestyle change, antihypertensive
	drug treatment and Targets of treatmentpage36.
-	Figure 3 Possible combinations of classes of anti-
	hypertensive drugspage39.
-	Figure 4. Different patterns of LV geometrypage44.
-	Figure 5. Pathophysiological pathways through which
	aortic stiffness may contribute to the development of
	diastolic dysfunctionpage59.
-	Figure 6.Strain curves in the radial, circumferential and
	longitudinal planespage73.
-	Figure 7.Regions of interest (kernels) represented in the
	end-diastole (ED) and end-systole (ES)page75.
-	Figure 8. Different components of left ventricular
	myocardial deformation that can be measured by
	speckle-tracking echocardiographypage80.
_	Figure 9 Circumferential-I ongitudinal strain nage81

-	Figure 10.Speckle-tracking echocardiography analysis of
	myocardial deformation showing measurements of
	longitudinal strain, radial strain, and circumferential
	strainpage 82.
-	Figure 11. Illustration of measurement of LV dimensions
	and EF By M- Mode Echocardiographypage92.
-	Figure 12.Illustration of Measurement of EF by Biplane
	Simpson Methodpage93.
-	Figure 13.(A)Illustration of LA diameter by M-Mode
	echocardiography ,(B)LA volume measurement in apical
	four chamber viewpage95.
-	Figure 14. Illustration of measurement of Mitral annular
	Plane systolic excursion (MAPSE)page 97.
-	Figure 15.Ilustration of Transmitral inflow velocity
	measured by Pulsed Wave Dopplerpage98.
-	Figure 16. Illustration of offline color coded Tissue
	Doppler Imaging of mitral annular velocitypage 100.
-	Figure (17) Steps involved in speckle-tracking echo
	cardiographpage107.
-	Figure 17` Bull's eye display of segmental and global
	peak-systolic longitudinal strainpage108.
-	Figure.18Comparison between hypertensive group and
	control group in BMIpage116.
-	Figure 19.Different patterns of LV geometry in
	hypertensive group of our studypage118.

-	Figure 20. Comparison between hypertensive group and
	control group in LV mass Indexpage119.
-	Figure 21. Comparison between hypertensive group and
	control group in mean LA volumepage119.
-	Figure 22. Comparison between hypertensive group and
	control group in mean MAPSEpage124.
-	Figure 23.comparison between hypertensive group and
	control group in mean GPLSpage124.
-	Figure 24. Correlation between LV Ejection fraction (LV
	EF) (%) and LV mass index among whole study
	samplepage 127.
-	Figure 25. Correlation between GPLS and LV mass
	index among whole study samplepage128.
-	Figure 26. Correlation between mean GPLS and LV
	diastolic function among whole study
	samplepage 134.
-	Figure 27.Correlation between mean BMI, normal LV
	systolic function, and subclinical LV systolic
	dysfunction among hypertensive grouppage139.

List of Tables

-	Table 1. Definitions and classification of office blood
	pressure levelsPage 5.
-	Table 2. Factors (other than office BP) influencing
	prognosis; used for stratification of total CV
	riskpage9.
-	Table 3. Total cardiovascular risk assessmentpage10.
-	Table 4. Instructions for correct office BP
	measurementpage18.
-	Table 5.Personal and family medical historypage21.
-	Table 6. Laboratory investigationspage22.
-	Table7.Recommendation for Blood pressure
	management, history and physical Examination
	page23.
-	Table 8.Predictive value, availability, reproducibility and
	cost-effectiveness of some markers of organ
	damagepage28.
-	Table 9.Recommendation of Search for asymptomatic
	organ damagepage30.
-	Table 10.Recommendation of Blood pressure goals in
	hypertensive patients page33.
-	Table 11.Summary of recommendations on treatment
	strategies and choice of drugspage38.

-	Table 12 Summary of recommendations on treatment
	strategies and choice of drugpage40.
-	Table13.Speckle-TrackingEchocardiography
	Terminologypage78.
-	Table 14. Classifications of BMIpage88.
-	Table 15. Different Echocardiography Parameters to
	differentiate normal LV diastolic filling pattern from
	pseudo normal patternpage102.
-	Table (16) Demographic characteristics of hypertensive
	group and control groupspage113.
-	Table (17) M-Mode and two dimensional finding in
	hypertensive group and control
	groupspage114.
-	Table 18.Grading of Diastolic function in hypertensive
	and control groupspage120.
-	Table 19.Tissue Doppler mitral annular velocities in
	hypertensive group and control grouppage121.
-	Table 20. Different LV systolic function parameters in
	hypertensive group and control grouppage 123.
-	Table 21. Correlations of different parameters among the
	whole study sample
-	Table 22. Correlation among hypertensive
	grouppage 129.

-	Table 23. Comparison between subjects with no DD, DD
	grade1, and DD grade2 among the whole study
	samplepage132.
-	Table 24. Comparison between patients with and without
	LV systolic dysfunction among the hypertensive
	grouppage137.
-	Table 25.Predictors of LV systolic dysfunction among
	hypertensive grouppage138.

Introduction

Hypertension is one of the most common diseases among population; it is the leading attributable risk factor for developing heart failure with preserved EF, which is today a hypertension related complication almost as common as stroke. Heart failure is usually a progressive condition that begins with risk factors for LV dysfunction (e.g., hypertension), proceeds to asymptomatic changes in cardiac structure (e.g., LV hypertrophy) and function (e.g., impaired relaxation), and then evolves into clinically overt heart failure, disability and death.

(Tocci et al., 2008)

Patients with hypertension usually present with concentric remodeling or concentric LV hypertrophy, despite of having normal-sized LV chamber and normal EF, even in the presence of a reduced longitudinal systolic function.

(Imbalzano et al., 2011)

Echocardiography is used to assess early subclinical changes in systolic and diastolic LV function. Nowadays, tissue speckle tracking provide additional information about global and regional cardiac function over and beyond classical

M-mode and 2D echocardiography, pulsed-wave Doppler & tissue Doppler index (TDI).

(Rover et al., 2006)

Tissue Speckle tracking analyze speckle artifacts in the echo image to obtain information of myocardial contractility and also on relaxation. Speckles are small areas of higher echogenicity which are caused by reflections, refraction, and scattering of echo beams. By tracking such speckles in the wall of the left ventricle throughout the cardiac cycle it is possible to obtain information on the direction and velocity of motion.

Comparing the motion of individual speckles to each other allows us to analyze the deformation of the myocardium.

(Saha et al., 2012)

Aim of the work

We aim to use Speckle Tracking echocardiography (Longitudinal Strain pattern) to detect subclinical left ventricular dysfunction in hypertensive patients with normal systolic function detected by 2D Echocardiography