BIOLOGICAL AND ECOLOGICAL STUDIES ON THE MAIN PESTS INFESTING CUCURBITS

BY ABDELLAH SAID HUSSEIN ABDEL-MONIEM

B. Sc. (Plant Protection), Assuit University, 1987M. Sc. (Entomology), Ain Shams University, 1994

A thesis submitted in partial fulfillment of

the requirements for the degree of DOCTOR OF PHILOSOPHY in

Agricultural Science (ENTOMOLOGY)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2000

Approval Sheet

BIOLOGICAL AND ECOLOGICAL STUDIES ON THE MAIN PESTS INFESTING CUCURBITS

BY ABDELLAH SAID HUSSEIN ABDEL-MONIEM

B. Sc.(Plant Protection), Assuit University, 1987M. Sc. (Entomology), Ain Shams University, 1994

This Thesis for Ph.D. degree has been approved by:
Prof. Dr. Monir Mohamed Metwally
Professor of Economic Entomology, Faculty of Agriculture,
El-Azhar University
Prof. Dr. Gamil B. El-Saadany
Professor of Economic Entomology, Faculty of Agriculture,
Ain Shams University
Prof. Dr. Ahmed Ali Gomaa
Professor of Economic Entomology and Head of Plant
Protection Dept., Faculty of Agriculture, Ain Shams
University (Supervisor).

Date of examination: 15 / 7 / 2000

BIOLOGICAL AND ECOLOGICAL STUDIES ON THE MAIN PESTS INFESTING CUCURBITS

BY

ABDELLAH SAID HUSSEIN ABDEL-MONIEM

B. Sc.(Plant Protection), Assuit University, 1987M. Sc. (Entomology), Ain Shams University, 1994

Under the supervision of :-

Prof. Dr. A. A. Gomaa

Professor of Economic Entomology and Head of Plant Protection Dept., Ain Shams University

Prof. Dr. A. A. Salem

Professor of Economic Entomology, Ain Shams University

Prof. Dr. Nadia Z. Dimetry

Professor of Economic Entomology, Dept. of Pests and Plant Protection, N. R. C.

Abdellah Said Hussein Abdel-Moniem. Biological and ecological studies on the main pests infesting cucurbits. Unpublished Doctor of Philosophy dissertation, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2000.

An investigation to study the fluctuations in the population densities and dynamics of insect pests attacking (watermelon, plants sweetmelon. cantaloupe. cucumber and squash) in field during 1996 and 1997 growing seasons has been undertaken. Some natural compounds at different concentrations have been evaluated against the key pests of cucurbit plants; the whitefly, Bemisia tabaci, the melon aphids Aphis gossypii, and the melon ladybird beetle Epilachna chrysomelina. The role of predator Aphidoletes aphidimyza for reducing the population density of A. gossypii in glasshouse has been investigated. Laboratory evaluation was carried out to study the effect of some plant extracts (Neem Azal T/S, Neudosan and Spruzit flüssig) on some biological and toxicological aspects of B. tabaci, A. gossypii and E. chrysomelina. The present results indicate that these compounds showed pesticidal properties against B. tabaci, A. gossypii and E. chrysomelina. The toxicity of both products decreased as their concentrations decreased. The fecundity and longevity of E. chrysomelina were greatly affected by these applications.

Key words:

Cucurbit plants - Glasshouse - Natural compounds - Neem extracts - Population densities - Population dynamics - The melon aphid - The melon ladybird beetle - The red pumpkin beetle - Whitefly.

ACKNOWLEDGMENT

The writer wishes to express his deep gratitude and appreciation to Prof. Dr. Ahmed A. Gomaa, Professor of Economic Entomology and Head of Plant Protection Department, and Prof. Dr. Ahmed A. Salem, Professor of Economic Entomology, Plant protection Department, Faculty of Agriculture, Ain Shams University,

Also, my gratitude is addressed to Prof. Dr. Nadia Z. Dimetry, Professor of Economic Entomology, and Dr. I. A. Ismail, Assistant Professor of Economic Entomology, Pests and Plant Protection Department, National Research Centre.

Also, my wishes to express my deep gratitude to Prof. Dr. habil. **Theo Wetzel**, Head of Institute of Plant Breeding and Plant Protection, and PD Dr. habil. **Christa Volkmar**, Institute of Plant Breeding and Plant Protection, Faculty of Agriculture, Martin-Luther University, Halle-Wittenberg, Germany, for supervising the manuscript.

Unlimited thanks are duo to Mrs. **Isolde Schramm**, Dipl.-Ing. agr., and to all staff members in Institute of Plant Breeding and Plant Protection, Faculty of Agriculture, Martin-Luther University, Halle-Wittenberg, Germany.

The valuable help of the staff members of plant protection Department, Ain Shams University, is greatly appreciated. The facilities offered by the National Research Centre, Institute of Plant Breeding and Plant Protection, Martin-Luther University, Halle-Wittenberg, Germany, and Egyptian mission are appreciated.

CONTENTS

		Page
	List of Tables	V
	List of Figures	XI
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Survey studies of the pests infesting cucurbit plants	3
2.2	Survey of natural enemies associated with the pests	3
	on cucurbit plants	
2.3	Population dynamics of the major insect pests	3
	infesting cucurbit plants	
2.3.1	The piercing sucking insect pests	8
2.3.1.1	The whitefly, Bemisia tabaci (Genn.)	8
2.3.1.2	The melon aphids, Aphis gossypii (Glover)	13
2.3.1.3	The thrips spp	15
2.3.1.4	Weather factors affecting on the pircing sucking	18
	insect pests population	
2.3.1.4.1	The whitefly Bemisia tabaci Genn	19
2.3.1.4.2	The melon aphids, Aphis gossypii Glover	20
2.3.2	The melon ladybird, Epilachna chrysomelina F.	21
2.3.3	The red pumpkin beetle, Raphidopalpa foveicollis	26
	Lucas	
2.3.4	Other insect pests	28
2.4	Population dynamics of the parasitoids and	29
	Predators associated with key pests infesting	
	cucurbit plants	
2.5	Control of certain cucurbit pests by some	33
	formulations of natural products	
2.5.1	Neem products	33
2.5.2	Other natural products	46

		Page
2.6	The predator Aphidoletes aphidimyza in glasshouse	48
3	MATERIALS AND METHODS	52
3.1	Survey of insect pests	52
3.2	Sampling technique	52
3.2.1	Sweeping net technique	52
3.2.2	Direct counting technique	53
3.2.3	Whole plant samples	53
3.2.4	Statistical analysis of data	53
3.3	Population dynamics of studied insect pests in	54
	glasshouse	
3.3.1	The whitefly, Bemisia tabaci	54
3.3.2	The predator, Aphidoletes aphidimyza, in glasshouse	55
3.4	Biological activity of some compounds as insect	55
	control agents	
3.4.1	Aphis gossypii and Aphis nasturtii	56
3.4.1.1	Biological studies	56
3.4.1.2	The adult stage	57
3.4.1.3	The nymphal stages	57
3.4.1.4	Residual effect of compounds on the adult stage	57
3.4.1.5	Toxicological studies	58
3.5	The whitefly, Bemisia tabaci (Genn.)	58
3.5.1	Semifield evaluation of tested compounds against <i>B</i> .	58
	tabaci	
3.6	The melon ladybird, Epilachna chrysomelina F.	59
3.6.1	The Biological studies	59
3.6.1.2	Toxicological studies	60
4	RESULTS AND DISCUSSION	62
4.1	Population densities of insect pests on cucurbit	65
	plants	
4.1.1	The whitefly, Bemisia tabaci (Genn.)	65

		Page
4.1.2	The melon aphid, Aphis gossypii Glover	70
4.1.3	The onion thrips, Thrips tabaci	76
4.1.4	The leaf hoppers	81
4.1.5	The lepidopterous larvae	85
4.1.6	The red pumpkin beetle, Raphidopalpa foveicollis	90
	Lucas	
4.1.7	The melon ladybird, Epilachna chrysomelina F.	96
4.2	Predators associated with insect pests in cucurbit	103
	fields	
4.2.1	Chrysopa carnea Steph. Adults	103
4.2.2	Coccinellid adults	107
4.2.3	C. carnea and Coccinellid larvae	111
4.3	Population densities of Bemisia tabaci and	117
	associated predators on Cucurbit plants in	
	glasshouse	
4.3.1	The whitefly	117
4.3.1.1	Egg stage	117
4.3.1.2	Adult stage	120
4.3.2	The predator of Aphidoletes aphidimyza	123
4.4	Evaluation of certain natural compounds against	128
	some key pests attacking cucurbit plants	
4.4.1	The melon ladybird, Epilachna chrysomelina F	128
4.4.1.1	Toxicological studies	128
a-	Neem Azal T/S	128
b-	Neudosan	131
c-	Spruzit flüssig	131
4.4.1.2	Latent effects of studies compounds	132
1.4.1.2.1	Duration of fourth larval instar	132
1.4.1.2.2	Duration of pupal stage	134
1.4.1.2.3	Adult stage	134
4.4.2	The melon aphid, Aphis gossypii (Glover)	143

		Page
4.4.2.1	Toxicological studies	143
a-	Neem Azal T/S	143
b-	Neudosan	143
c-	Spruzit flüssig	145
4.4.2.2	Latent effects	145
a-	Neem Azal T/S	145
b-	Neudosan	149
c.	Spruzit flüssig	150
4.4.3	The Buckthorn aphid, Aphis nasturtii Kaltenbach	156
4.4.3.1	Toxicological studies	156
a-	Neem Azal T/S	156
b-	Neudosan	156
c-	Spruzit flüssig	156
4.4.3.2	Latent effects	158
a-	Neem Azal T/S	158
b-	Neudosan	160
c-	Spruzit flüssig	160
4.4.4	The whitefly, Bemisia tabaci (Genn.)	163
a-	Egg stage	163
b-	Adult stage	165
5	SUMMARY	168
6	REFERENCES	181
	ARABIC SUMMARY	1

LIST OF TABLES

No.		Page
Table (1):	The key insect pests which attack cucurbit plants in	4
	the worldwide (according to Hill 1983)	
Table (2):	The secondary insect pests which attack cucurbit	5
	plants in the worldwide (according to Hill 1983)	
Table (2):	The secondary insect pests which attack cucurbit	6
continued	plants in the worldwide (according to Hill 1983)	
Table (3):	World survey of parasitoids and predators which	7
	attack Cucurbit insect pests from the available	
	literature.	
Table (4):	The list of insect pests attacking cucurbit plants and	63
	the associated natural enemies in Kena during 1996	
	and 1997 seasons.	
Table (4):	The list of insect pests attacking cucurbit plants and	64
continued	the associated natural enemies in Kena during 1996	
	and 1997 seasons.	
Table (5):	Population density of Bemisia tabaci (larvae) on	66
	cucurbit plants during the summer season of 1996	
	and 1997 sampled by direct count in Kena.	
Table (6):	Seasonal average numbers of Bemisia tabaci larvae	67
	on cucurbit plants during the summer seasons of	
	1996 and 1997.	
Table (7):	Population density of Aphis gossypii (No. of adults	71
	and nymphs per square inch of leaf) on cucurbit	
	plants during the summer season of 1996 and 1997	
	sampled by direct count in Kena	
Table (8):	Seasonal average number of Aphis gossypii nymphs	73
	and adults during the summer season of 1996 and	
	1997.	

No.		Page
Table (9):	Mean number of <i>Thrips tabaci</i> on cucurbit leaf during the summer season of 1996 and 1997 sampled by direct count in Kena.	77
Table (10):	Seasonal average number of <i>Thrips tabaci</i> on cucurbit plants during the summer season of 1996 and 1997	78
Table (11):	Population density of leaf hoppers on cucurbit plants during the summer season of 1996 and 1997 sampled by sweeping net in Kena	82
Table (12):	Seasonal average of leaf hoppers on cucurbit plants during the summer season of 1996 and 1997, sampled by sweeping net	83
Table (13):	Population density of noctuid larvae (lepidoptera) on cucurbit plants during the summer season of 1996 and 1997 sampled by direct count in Kena.	87
Table (14):	Seasonal average numbers of (lepidopterous) larvae on cucurbit plants during the summer season of 1996 and 1997, sampled by direct count.	88
Table (15):	Population density of <i>Aulacophora foveicollis</i> (adults) on cucurbit plants during the summer season of 1996 and 1997 sampled by sweeping net in Kena.	91
Table (16):	The seasonal average number of <i>Aulacophora</i> foveicollis (beetles) on cucurbit plants during the summer season of 1996 and 1997, sampled by sweeping net.	92
Table (17):	Population density of <i>Epilachna chrysomelina</i> (adults) on cucurbit plants during the summer season of 1996 and 1997 sampled by sweeping net in Kena.	97

No.	1	Page
Table (18):	The seasonal average number of Epilachna	98
	chrysomelina adults on cucurbit plants during the	
	summer season of 1996 and 1997, sampled by	
	sweeping net.	
Table (19):	Population density of Epilachna chrysomelina	99
	larvae on cucurbit plants during the Summer season	
	of 1996 and 1997 (Mean number of larvae / plant)	
	in Kena.	
Table (20):	The seasonal average of Epilachna chrysomelina	100
	larvae (per plant) on cucurbit plants during the	
	summer season of 1996 and 1997, sampled by direct	
	count.	
Table (21):	Average numbers of the adult predator Chrysoperla	104
	carina on cucurbit plants during the summer season	
	of 1996 and 1997 sampled by sweeping net in Kena	
Table (22):	Seasonal average numbers of the adult predator	105
	Chrysoperla carina on cucurbit plants during the	
	summer season of 1996 and 1997, sampled by	
	sweeping net.	
Table (23):	Average numbers of Coccinellid adults on cucurbit	108
	plants during the summer season of 1996 and 1997	
	sampled by sweeping net in Kena.	
Table (24):	Seasonal average number of predators Coccinellid	109
	adults on cucurbit plants during the summer season	
	of 1996 and 1997, sampled by sweeping net.	
Table (25):	Average numbers of Chrysoperla carina and	112
	Coccinellid larvae on cucurbit plants during the	
	summer season of 1996 and 1997, sampled by direct	
	count in Kena.	

No.		Page
Table (26):	Average numbers of Chrysoperla carina and	113
	Coccinellid larvae on cucurbit plants during the	
	summer season of 1996 and 1997, sampled by direct	
	count	
Table (27):	Weekly mean numbers of Bemisia tabaci eggs/leaf	118
	on cucurbit plants cultivated in glasshouse during the	
	Summer season of 1998 in Germany.	
Table (28):	Weekly mean numbers of Bemisia tabaci adults/leaf	121
	on cucurbit plants in glasshouse during the Summer	
	season of 1998 in Germany.	
Table (29):	Population fluctuation of Aphidoletes aphidimyza	124
	and Aphis gossypii during the summer season of	
	1998 on squash in glasshouse in Germany, sampled	
	by direct count.	
Table (30):	Corrected mortality percentage of E. chrysomelina	129
	second instar larvae treated with different	
	concentrations of three natural compounds.	
Table (31):	Corrected mortality percentage of E. chrysomelina	130
	fourth instar larvae treated with different	
	concentrations of three natural compounds.	
Table (32):	Duration of the fourth larval instar of E.	133
	chrysomelina (days) treated with different natural	
	compounds.	
Table (33):	Duration of the pupal stage (days) of E.	135
	chrysomelina treated as fourth larval instar with	
	different natural compounds	
Table (34):	Sex ratio of Epilachna chrysomelina adults produced	136
	from fourth larval instar which treated with different	
	natural compounds.	

No.		Page
Table (35):	Longevity of emerged adults (days) of Epilachna	139
	chrysomelina produced from fourth larval instar	
	treated with different compounds.	
Table (36):	Mean number of eggs laid by mated female of	140
	Epilachna chrysomelina treated as fourth larval instar	
	with different natural compounds.	
Table (37):	Corrected mortality percentages of Aphis gossypii	144
	adults treated with different concentrations of the	
	tested natural compounds (Means of 10 replicates).	
Table (38):	Longevity and fecundity of Aphis gossypii adult	146
	females treated with different concentrations of	
	natural compounds.	
Table (39):	Effect of Neem Azal-T/S, Neudosan and Spruzit	148
	flüssig on the survival of the immature stages of	
	Aphis gossypii and the type of emerged adults.	
Table (40):	Durations of resulted nymphal instars (days) of $Aphis$	153
	gossypii after treating the adults with different	
	concentrations Neem Azal-T/S, Neudosan and Spruzit	
	flüssig.	
Table (41):	Average number of progeny (per 5 females) after	154
	sprying Aphis gossypii adults with 0.25% of tested	
	compounds.	
, ,	Toxicity of some compounds, Neem Azal-T/S,	157
	Neudosan and Spruzit flüssig against Aphis nasturtii	
	adults (Means of 10 replicates).	
Table (43):	Effect of Neem Azal-T/S, Neudosan and Spruzit	159
	flüssig on the longevity and fecundity of Aphis	
	nasturtii adult female.	

No.		Page
Table (44):	Average number of progeny (per 5 females) after	161
	sprying Aphis nasturtii adults with 0.25% of tested	
	compounds.	
Table (45):	Number of Bemisia tabaci eggs laid on squash	164
	seedling before and after spray in glasshouse.	
Table (46):	Number of Bemisia tabaci adults living on squash	
	seedlings before and after spray in glasshouse.	