

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Department

COMPARATIVE STUDY OF THE DIFFERENT UNBALANCE FACTORS OF THE INDUCTION MOTORS FOR ENERGY EFFICIENCY PURPOSE

A Thesis

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Power and Machines Engineering

Submitted By

Eng. Joseph Girgis Massoud Abd-Elmalak

B.Sc. of Electrical Engineering Helwan University, 2007

Supervised By

Prof. Dr. Eyhab A. K. El-Kharashi

Electrical Power and Machines Department Ain Shams University **Dr. Maher M. A. El-Dessouki**Electrical Power and Machines Department
Ain Shams University

Cairo - 2018

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Cairo – Egypt

Approval Sheet

For the M. Sc. thesis with title

Comparative Study of the Different Unbalance Factors of the Induction Motors for Energy Efficiency Purpose

By:

Eng. Joseph Girgis Massoud Abd-Elmalak

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Power and Machines Engineering

Supervision Committee

Title, Name and Affiliation	Signature
Prof. Dr. Eyhab A. K. El-Kharashi	•••••
Electrical Power and Machines Department,	
Faculty of Engineering, Ain Shams University.	
Dr. Maher M. A. El-Dessouki	•••••
Electrical Power and Machines Department,	
Faculty of Engineering, Ain Shams University.	
	Date: 23/12/2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Cairo – Egypt

Approval Sheet

For the M. Sc. thesis with title

Comparative Study of the Different Unbalance Factors of the Induction Motors for Energy Efficiency Purpose

By:

Eng. Joseph Girgis Massoud Abd-Elmalak

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Power and Machines Engineering

Examiners Committee

Title, Name and Affiliation	Signature
Prof. Dr. Essam Eddin M. Rashad Electrical Power and Machines Department, Faculty of Engineering, Tanta University.	••••••
Prof. Dr. Hussein Farid Elsayed Soliman Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University.	•••••
Prof. Dr. Eyhab A. K. El-Kharashi Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University.	••••••
	Date: 23/12/2017

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Power and Machines Engineering.

The work included in this thesis was carried out by the author at the Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Joseph	n Girgis Massou	ıd Abd–Elmalak
Signature:		

Date:

ACKNOWLEDGEMENT

I thank my God for providing me all the intellect, health and opportunities that led to successful completion of this work.

I would like to convey my thanks to the Department of Electrical Power and Machines Engineering of Ain Shams University for providing me with an opportunity to pursue my higher studies.

I would like also to express my most sincere gratitude to my supervisors, Prof. Dr. Eyhab A. K. El-Kharashi and Dr. Maher M. A. El-Dessouki for their guidance, support, advice and encouragement for the duration of this thesis.

Also, I thank the staff of Strategic Planning Sector in Egyptian Electricity Holding Company.

Finally, I need to deeply thank my parents, my wife, and my two daughters for their patience and unconditional love that have supported me through the period of this study.

ABSTRACT

The main objective of this thesis is to assess the performance of three-phase induction motors (3-ph IMs) supplied from unbalanced voltage, by using different unbalance factors of voltage, current, impedance, and power. An accurate approach, different than previous studies, is utilized to reach to precise results used to explain the unbalanced degree. According to these results, energy efficiency of 3-ph IM can be improved.

The Percent Voltage Unbalance Factor (PVUF), as defined by NEMA, and Voltage Unbalance Factor (VUF), as defined by IEC, take only into account the voltage magnitude and neglecting unbalanced voltage angle, upon calculating the unbalance level. The importance of the impact of the unbalanced voltage angle on the machine performance has been proven in this study. Thus, Complex VUF (CVUF) can be used. CVUF depends on the voltage magnitude and the angle of the unbalanced voltage and neglecting the impact of the machine parameters in assessing the performance of 3-ph IM. The machine parameters are essential for providing accurate assessment of IM performance during the unbalanced operation. Also, the Complex Impedance Unbalance Factor (CIUF) is utilized in this study, which relies only on the 3-ph IM parameters.

Furthermore, Complex Current Unbalance Factor (CCUF) is used, which depends on both voltage unbalance and machine parameters. Due to the importance of this factor, CCUF is divided into two factors: one related to the negative and positive sequence currents passing through the stator windings (CCUF of the Stator (CCUFS)) and the second related to the negative and positive sequence currents passing through the rotor windings (CCUF of the Rotor (CCUFR)).

Relations between torque and three unbalanced factors (CVUF, CCUF, and CIUF) have been proven and torque - speed characteristics of 3-ph IM for various values of unbalanced factors have been discussed, along with the comparison of three unbalanced factors with speed.

This thesis also provides a comparative analysis of the performance, during balanced and unbalanced operation, between two cascaded 3-ph IMs (2x25 hp) and single large-

sized 3-ph IM (50 hp). This thesis verified that the operation of cascaded IMs under balanced and unbalanced voltages is more efficient than a single large-sized IM.

Additionally, Power Unbalance Factors (PUFs) are used to evaluate the performance precisely of the 3-ph IM (50 hp) and measure the degree of power during unbalanced voltage conditions. Relations between motor performance (i.e., copper losses, efficiency, power factor, input power, electromagnetic torque, and derating factor) and PUFs have been proven to reach to an accurate factor. Reactive power unbalance factor (K_Q) provides more precise results than other factors as it relies upon CVUF and CCUF, as well as the unbalanced angle between the voltage and current.

Finally, to improve motor energy efficiency and save the motor life, it should be derated. By using a proper and accurate derating factor, saving in input power can be achieved. Therefore, helping to increase power plant reserves, enhancing the power system quality, and reducing the customer bill cost.

The analysis of 3-ph IM is applied using the approach of symmetrical component. Further, MATLAB/Simulink is used to examine the behavior of 3-ph IM during balanced and unbalanced operations.

Key words:

Voltage Unbalance – Unbalance factors – Cascaded Induction Motors – Derating factor – Energy efficiency– Matlab/Simulink.

TABLE OF CONTENTS

Approval sheet	
Statement	ii
Acknowledgments	iv
Abstract	<i>.</i>
Key words	V
Table of Contents	vii
List of Figures	X
List of Tables	xix
List of Symbols	XX
List of abbreviations	XXV
Chapter 1:	
1. Introduction	
1.1 Background	1
1.2 Thesis Subject	2
1.3 Thesis Objective and Approach	2
1.4 Thesis Outline	3
Chapter 2:	
2. Complex Voltage, Impedance, and Current Unbala	nce Factors5
2.1 Literature Review	5
2.2 Equivalent Circuit of the IM Supplied from Sin	usoidal Asymmetrical Voltages
Source	7
2.3 Symmetrical Component Analysis	8
2.3.1 Current Asymmetry	9
2.3.2 Definition of the CVUF	g
2.3.3 Voltage Pattern under Unbalanced Supply V	oltage9
2.3.4 The Complex Voltage Unbalance Factor (CV	/UF)10

2.3.5 The Complex Current Unbalance Factor (CCUF)	12
2.4 The Electromagnetic Torque	14
2.4.1 The Torque as A function in the CVUF	14
2.4.2 The Torque as A function in the CCUFR	15
2.4.3 The Torque as A function in the CCUFS	15
2.4.4 The Torque as A function in the Complex Impedance Unbalance	ce Factor
(CIUF)	16
2.5 Cascading the Induction Motors	16
2.5.1 Analysis of Cascaded Induction Motors (CIMs) under Steady State	17
2.5.2 The Losses in Cascaded Induction Motors	17
2.5.3 Analysis of the Cascaded Induction Motors under Unbalanced	Voltage
Condition	18
2.6 Results and Discussion.	19
2.6.1 The Output Torque with the Unbalance Factor (Single Large IM)	19
2.6.2 Comparison between the Three Unbalanced Factors with Speed	22
2.6.3 The Torque Error.	23
2.6.4 Analysis the Performance of Two Induction Motors Conn	ected in
Cascade	24
2.7 Conclusion.	28
Chapter 3:	
3. Power Unbalance Factors	29
3.1 Literature Review.	29
3.2 Definitions of Power Unbalance Factors (PUFs)	30
3.2.1 Output Power Unbalance Factor (K _p)	30
3.2.2 Reactive Power Unbalance Factor (K _Q)	31
3.2.3 Apparent Power Unbalance Factor (K _s)	32
3.3 Influence of PUFs on IM Performance	32

3.3.1 Electromagnetic Torque
3.3.1.1 The Torque as A function in the Output Power Unbalance Factor
(K_p) 33
3.3.1.2 The Torque as A function in the Reactive Power Unbalance Factor
(K _Q)33
3.3.1.3 The Torque as A function in the Apparent Power Unbalance Factor
(K_s) 34
3.3.2 Output Power, Input Power, Reactive Power and Copper Losses as A function of PUFs
3.3.2.1 Output Power Unbalance Factor (K _p)
3.3.2.2 Reactive Power Unbalance Factor (K _Q)35
3.3.2.3 Apparent Power Unbalance Factor (K _s)35
3.3.3 Efficiency (η), Power Factor (P. F) and Derating Factor (D.F.)36
3.3.3.1 Derating Factor (D.F.)
3.4 Results and Discussion
3.4.1 The Output Torque with Power Unbalance Factors (PUFs)36
3.4.2 Effect of PUFs on the Output Power, Input Power, Reactive Power, and Copper Losses
3.4.3 Effect of PUFs on the Efficiency, Power Factor and Derating Factor
43
3.4.4 Dynamic Analysis
3.4.4.1 Effect of Derating Factor on IM Performance
3.5 Conclusion. 54
Chapter 4:
4. Improving the Performance of Large Rating Induction Motor55
4.1 An Overview55
4.2 Definitions of Power Quality Problems
4.2.1 Voltage Unbalance Measurement

4.2.3 Harmonic Equivalent Circuit 58 4.3 Analysis of Machine Performance under Unbalanced Conditions 55 4.3.1 Torque 59 4.3.2 Power Factor 60 4.3.3 Copper Losses 60 4.3.4 Motor Efficiency 61 4.4 Discussion and Simulation Results 61 4.4.1 Results of Balanced and Unbalanced Conditions on the Performance of SIM and CIMs 61 4.4.1.1 Performance at Balanced conditions (Rated Voltage (400V) and Rated Frequency (60 HZ)) 61 4.4.1.2 Performance of Operation of CIMs and SIM at Variation in Frequency and Balanced Voltage 65 4.4.1.3 Performance of Operation of CIMs and SIM at Both Variation in Frequency and Unbalanced Voltage 70 4.5 Conclusion 76 Chapter 5: 5. Conclusions and Suggestions for Future Work 77 5.1 Conclusions 77 5.2 Suggestions for the Future Work 75 APPENDIX (B) Simulink Model Used for Balanced and Unbalanced Conditions 80 APPENDIX (C) Motor Parameter 82 APPENDIX (E) Speed Ripple 83 APPENDIX (F) Publications 85 REFERENCES 86	4.2.2 Harmonic Distortion Measurement
4.3.1 Torque 55 4.3.2 Power Factor 60 4.3.3 Copper Losses 60 4.3.4 Motor Efficiency 61 4.4 Discussion and Simulation Results 61 4.4.1 Results of Balanced and Unbalanced Conditions on the Performance of SIM and CIMs 61 4.4.1.1 Performance at Balanced conditions (Rated Voltage (400V) and Rated Frequency (60 HZ)) 61 4.4.1.2 Performance of Operation of CIMs and SIM at Variation in Frequency and Balanced Voltage 65 4.4.1.3 Performance of Operation of CIMs and SIM at Both Variation in Frequency and Unbalanced Voltage 70 4.5 Conclusion 76 Chapter 5: 5. Conclusions and Suggestions for Future Work 75 5.1 Conclusions 77 5.2 Suggestions for the Future Work 75 APPENDIX (A) Motors parameters 80 APPENDIX (B) Simulink Model Used for Balanced and Unbalanced Conditions 81 APPENDIX (C) Motor Parameter 82 APPENDIX (D) Torque Ripple 83 APPENDIX (F) Publications 85	4.2.3 Harmonic Equivalent Circuit
4.3.2 Power Factor	4.3 Analysis of Machine Performance under Unbalanced Conditions59
4.3.3 Copper Losses	4.3.1 Torque
4.3.4 Motor Efficiency	4.3.2 Power Factor 60
4.4 Discussion and Simulation Results	4.3.3 Copper Losses 60
4.4.1 Results of Balanced and Unbalanced Conditions on the Performance of SIM and CIMs	4.3.4 Motor Efficiency 61
SIM and CIMs	4.4 Discussion and Simulation Results. 6
Rated Frequency (60 HZ))	SIM and CIMs61
4.4.1.2 Performance of Operation of CIMs and SIM at Variation in Frequency and Balanced Voltage	
Frequency and Balanced Voltage	
4.4.1.3 Performance of Operation of CIMs and SIM at Both Variation in Frequency and Unbalanced Voltage	
Frequency and Unbalanced Voltage	
Chapter 5:5. Conclusions and Suggestions for Future Work775.1 Conclusions775.2 Suggestions for the Future Work79APPENDIX (A) Motors parameters80APPENDIX (B) Simulink Model Used for Balanced and Unbalanced Conditions81APPENDIX (C) Motor Parameter82APPENDIX (D) Torque Ripple83APPENDIX (E) Speed Ripple84APPENDIX (F) Publications85	
5. Conclusions and Suggestions for Future Work	4.5 Conclusion
5. Conclusions and Suggestions for Future Work	Chapter 5:
5.1 Conclusions	
APPENDIX (A) Motors parameters	
APPENDIX (A) Motors parameters	5.2 Suggestions for the Future Work
APPENDIX (B) Simulink Model Used for Balanced and Unbalanced Conditions	
Conditions	
APPENDIX (D) Torque Ripple	
APPENDIX (E) Speed Ripple	APPENDIX (C) Motor Parameter82
APPENDIX (F) Publications85	APPENDIX (D) Torque Ripple83
APPENDIX (F) Publications85	APPENDIX (E) Speed Ripple84
REFERENCES86	APPENDIX (F) Publications85
	REFERENCES

LIST OF FIGURES

Fig. 1.1.	Share of motor electricity use by end-user sector
Fig. 2.1.	Equivalent circuit of IM (Single-phase)8
Fig. 2.1.a	Positive sequence circuit8
Fig. 2.1.b	Negative sequence circuit8
Fig. 2.2.	Variation of A and B as per angle of voltage unbalance (θ_v) 10
Fig. 2.3.	The CVUF diagram
Fig. 2.4.	CCUFS versus voltage unbalance factor
Fig. 2.5.	Impedance ratio (K_z) versus voltage unbalance factor (K_v)
Fig. 2.6.	Schematic diagram of the system under study16
Fig. 2.7.	Torque/speed characteristics variation at different values of K _v (50 hp Induction Motor)
Fig. 2.8.	Torque/speed characteristics variation at different values of K _z (50 hp Induction Motor)
Fig. 2.9.	Torque/speed characteristics variation at different values of K _{cr} (50 hp Induction Motor)
Fig. 2.10.	Torque versus speed for three different unbalance factors (50 hp Induction Motor-Percentage Unbalance=1.7%)
Fig. 2.11.	Torque versus speed for three different unbalance factors (50 hp Induction Motor-Percentage Unbalance=7%)

Fig. 2.12.	Comparison between the Four Unbalanced Factors with Speed22
Fig. 2.13.	The torque error and speed variation for the torque at K_v or K_z and the torque at K_c
Fig. 2.14.	The torque / speed characteristic for one big induction motor and two cascaded induction motors
Fig. 2.15.	Comparison between the output power of single IM and two-cascaded induction motors
Fig. 2.16.	Comparison between the copper losses for single and two-cascaded induction motors
Fig. 2.17.	Comparison between the efficiency of single IM and two-cascaded induction motors
Fig. 2.18.	Output power of CIMs and one IM versus K _v and K _z at constant full load condition
Fig. 2.19.	power of CIMs and one IM versus K _{cr} at constant full load condition
Fig. 3.1.	Positive, Negative Sequence and resultant torques of an IM Subjected to Unbalanced Supply Voltages
Fig. 3.2.	Variation of the torque/speed characteristics at different values of K _p 37
Fig. 3.3.	Variation of the torque/speed characteristics at different values of K _Q 37
Fig. 3.4.	Variation of the torque/speed characteristics at different values of K _s 39
Fig. 3.5.	Variation of input power (Watt), output power (Watt), and reactive power (Var) with K _n (%)

Fig. 3.6.	Variation of input power (Watt), output power (Watt), and reactive power (Var) with K _Q (%)
Fig. 3.7.	Variation of input power (Watt), output power (Watt), and reactive power (Var) with K _s (%)
Fig. 3.8.	Variation of stator, rotor, and total copper losses with K_p (%)41
Fig. 3.9.	Variation of stator, rotor, and total copper losses with K_Q (%)42
Fig. 3.10.	Variation of stator, rotor, and total copper losses with K_s (%)42
Fig. 3.11.	Comparison between PUFs (%) with motor efficiency (P.u)43
Fig. 3.12.	Comparison between PUFs with power factor
Fig. 3.13.	Comparison between PUFs with derating factor (D.F.)44
Fig. 3.14.	Effect of balanced voltage (K_Q =0) on motor outputs and inputs with time
Fig. 3.14.a	Electromagnetic Torque (N.m)45
Fig. 3.14.b	Rotor speed (rpm)
Fig. 3.14.c	Stator and Rotor Phase A currents
Fig. 3.14.d	ARP of phase A
Fig. 3.15.	Effect of unbalanced power (three cases) on electromagnetic torque and rotor speed
Fig. 3.15.a	Electromagnetic Torque with time at K _Q =4.89%48
Fig. 3.15.b	Rotor Speed with time at K ₀ =4.89%48

Fig. 3.15.c	Electromagnetic Torque with time at K _Q =2.67%	.48
Fig. 3.15.d	Rotor Speed with time at K _Q =2.67%	.48
Fig. 3.15.e	Electromagnetic Torque with time at K _Q =16.49%	.48
Fig. 3.15.f	Rotor Speed with time at K _Q =16.49%	.48
Fig. 3.16.	Effect of balanced and unbalanced voltages (three cases) on tors speed characteristics of the IM	
Fig. 3.16.a	Balanced condition.	49
Fig. 3.16.b	Unbalanced in voltage magnitude	49
Fig. 3.16.c	Unbalanced in phase angle.	49
Fig. 3.16.d	Unbalanced in voltage magnitude and phase angle	49
Fig. 3.17.	Effect of unbalanced power (three cases) on motor currents ARP	
Fig. 3.17.a	Stator and Rotor currents (phase A) with time at K _Q =4.89%	50
Fig. 3.17.b	ARP (phase A) with time at K _Q =4.89%	50
Fig. 3.17.c	Stator and Rotor currents (phase A) with time at K _Q =2.67%	50
Fig. 3.17.d	ARP (phase A) with time at K _Q =2.67%	50
Fig. 3.17.e	Stator and Rotor currents (phase A) with time at K _Q =16.49%	51
Fig. 3.17.f	ARP (phase A) with time at K _Q =16.49%	51
Fig. 3.18.	ARP before and after using D.f. at time =1.6 Sec	53