

DEVELOPMENT OF HYDRAULIC MODEL FOR FOAM DRILLING IN VERTICAL WELLS

By

Seydou Sinde

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

PETROLEUM ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

DEVELOPMENT OF HYDRAULIC MODEL FOR FOAM DRILLING IN VERTICAL WELLS

By **Seydou Sinde**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

in

PETROLEUM ENGINEERING

Under the Supervision of

Prof. Dr. Prof. Dr.

Abdel Sattar Abdel Hamid Dahab

Professor of Petroleum Engineering Professor of Petroleum Engineering

Eissa Mohamed Shokir

Faculty of Engineering, Cairo University Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

DEVELOPMENT OF HYDRAULIC MODEL FOR FOAM DRILLING IN VERTICAL WELLS

By **Seydou Sinde**

B.Sc. Degree in Petroleum Engineering, Al Azhar University, (2006)

M. Sc. Degree in Petroleum Engineering, Cairo University, (2009)

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

PETROLEUM ENGINEERING

Approved by the Examining Committee

Prof. Dr. Abdel Sattar Abdel Hamid Dahab, Thesis Main Advisor

Professor of Petroleum Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Eissa Mohamed Shokir, Advisor

Professor of Petroleum Engineering, Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Rashad Taha Farag, Member

Professor of Mechanical Engineering, Faculty of Engineering, Cairo University

Eng Abdol Alim Abdol Karim Hassan Ta

Eng. **Abdel Alim Abdel Karim Hassan Taha, Member** EX-CEO of EGPC (Egyptian General Petroleum Corporation)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Seydou Sinde **Date of Birth:** 04/03/1979

Nationality: CÔTE D'IVOIRE
E-mail: s_sinde@hotmail.com

Phone: 01006740728

Address: 30 Selim Odah st, Hadayek El Maady

Registration Date: 01/10/2009 **Awarding Date:** 2016

Degree: Doctor of Philosophy **Department:** Petroleum Engineering

Supervisors:

Prof. Abdel Sattar Abdel Hamid Dahab

Prof. Eissa Mohamed Shokir

Examiners:

Eng. Abdel Alim Abdel Karim Hassan Taha (EX-CEO of

EGPC 66 Zahrat El Maadi Tower, Kornish El Nil)

Prof. Mohamed Rashad Taha Farag Prof. Abdel Sattar Abdel Hamid Dahab

Prof. Eissa Mohamed Shokir

Title of Thesis:

DEVELOPMENT OF HYDRAULIC MODEL FOR FOAM DRILLING IN VERTICAL WELLS

Key Words:

UBD; Foam; hydraulics; Rheology, Cuttings.

Summary:

In this work, a new development of foam drilling hydraulic model and converting this model to user interface program are proposed. They can be used to better simulate the foam drilling hydraulic calculations for vertical wells. The development model considers foam as a Non-Newtonian power-low fluid in spite of the dispute that still persists among the researchers. Results of the proposed model revealed that the foam flow is greatly affected by the injection pressures, injection flow rates (liquid and gas flow rates), bottomhole temperature, drilling rate (ROP), cutting sizes and densities, formation fluid influxes and the surface back pressure. The model also proposes a try-and-error procedure to initially determine the best selections of the injection pressure and the injection rates of both liquid and gas. The model evaluation and validation were tested by running the program on two actual wells drilled underbalanced with foam in the Middle East with an absolute average error that could not exceed 2.56 %in the first well and 10.85 % in the second well, andthese are very good and encouraging results.

Acknowledgments

I, Seydou Sinde, would like to infinitely express my deepest and most sincere gratefulness to the main thesis supervisor, Prof. Abdel Sattar Abdel Hamid Dahab for his endless advices, constant supports and forever encouragement during the course of this thesis.

Special thank, particular regard and precious recognition go toward the thesis cosupervisor, Prof. Eissa Mohamed Shukir for his strict revision, enlightening remarks, objective comments and positive criticizes vis-à-vis of this thesis.

All admirations and appreciations are also due to the Arabic Fund for Technical Assistance to the African Countries for it partially financial supports for more than five years till the achievement and realization of this thesis.

Dedication

This thesis is dedicated to my parents, father and mother, for their permanent encouragement. These two labor couples, in spite of the limitation of their educational levels, did all what they could to let me trace the path of the knowledge. They have never thought one day about themselves as long as I am in need of any financial matter. I have always been their priority because of the precious consideration and great respect they put to the knowledge and the knower. So, if anyone is better than the knower, it is certainly, his parents without whom the knower would not be what he/she is.May Allah bless both of you!And today, I openly show to the all world the fruits of your tiredness and the results of your endurance in terms of this PhD thesis.

TABLE OF CONTENTS

Content Page	
Acknowledgement	V
Dedication	VI
Table of Contents	VII
List of Tables	XII
List of Figures	XIII
Nomenclature	XIX
Abstract	XXII
Chapter 1: Introduction	1
Chapter 2: Literature Review	5
2.1: Foam behavior and rheology	5
2.1.1: Foam definition	5
2.1.2: Quality	5
2.1.3: Texture	5
2.1.4: Foam Stability	6
2.1.5: Foaming Agents	6
2.1.6: Defoaming agents	6
2.2: Previous researches and investigations on the drilling foam	6
2.3: Cuttings transport in drilling foam	19
2.4: Calculations of Compressibility Factor	23
Chapter 3: Statement of the Problem	25
Chapter 4: Development of the Hydraulic Model	27
4.1: Hydraulics model inside the drill string	27
4.1.1: Model assumptions	27
4.1.2: Main steps of the calculations for the computer pro	gram27
4.2: Hydraulics model across the drill bit.	32

4.3: Hydraulics model in the annulus
4.3.1: Model assumptions for the annular flow
4.3.2 Steps of annular flow calculations for computer program34
Chapter 5: Results & Discussions
5: The program interfaces
5.1: Pressure profiles50
5.2: Velocity profiles51
5.3: Friction factor profiles
5.4: Profile of the compressibility factor (Z)54
5.5: Quality profile (Γ)
5.6: Density profile (ρ)
5.7: Profile of the flow power index (n)
5.8: Profile of the flow consistency index (k)
5.9: Profile of the foam effective viscosity (μ_{eff})
5.10: Profile of the foam Reynolds Number (NRe)62
5.11: Profile of the cuttings concentration (Cc)63
5.12: Effects of the different parameters on the foam profiles62
5.12.1: Effects of the injection pressures on the pressure drops66
5.12.2: Effects of the injection pressures on the foam velocity67
5.12.3: Effects of the injection pressures on the foam quality69
5.12.4: Effects of the injection pressures on the foam density70
5.12.5: Effects of the injection pressures on the foam effective viscosity72
5.12.6: Effects of the injection pressures on the foam flow power index74
5.12.7: Effects of the injection pressures on the foam flow consistency index76
5.12.8: Effects of the injection pressures on the foam Reynolds Number78
5.12.9: Effects of the injection pressures on the foam friction factor79
5.12.10: Effects of injection pressures on the annular cuttings concentration81

5.12.11: Effects of the geothermal gradient on the pressure drop82
5.12.12: Effects of the geothermal gradient on the foam velocity84
5.12.13: Effects of the geothermal gradient on the foam quality85
5.12.14: Effects of the geothermal gradient on the foam density87
5.12.15: Effects of the geothermal gradient on the foam effective viscosity89
5.12.16: Effects of the geothermal gradient on the foam flow power index91
5.12.17: Effects of geothermal gradient on the foam flow consistency index92
5.12.18: Effects of the geothermal gradient on the foam Reynolds Number94
5.12.19: Effects of the geothermal gradient on the foam friction factor96
5.12.20: Effects of the geothermal gradient on the cuttings concentration98
5.12.21: Effects of the gas injections on the foam pressure drop99
5.12.22: Effects of the gas injections on the foam velocity
5.12.23: Effects of the gas injections on the foam quality
5.12.24: Effects of the gas injections on the foam density
5.12.25: Effects of the gas injections on the foam effective viscosity106
5.12.26: Effects of the gas injections on the foam flow power index108
5.12.27: Effects of the gas injections on the foam flow consistency index109
5.12.28: Effects of the gas injections on the foam Reynolds Number111
5.12.29: Effects of the gas injections on the foam friction factor113
5.12.30: Effects of the gas injections on the annular cuttings concentration115
5.12.31: Effects of the liquid injections on the foam pressure drop115
5.12.32: Effects of the liquid injections on the foam velocity
5.12.33: Effects of the liquid injections on the foam quality119
5.12.34: Effects of the liquid injections on the foam density
5.12.35: Effects of the liquid injections on the foam effective viscosity122
5.12.36: Effects of the liquid injections on the foam flow power index124
5.12.37: Effects of liquid injections on the foam flow consistency index126

5.12.38: Effects of the liquid injections on the foam Reynolds Number128
5.12.39: Effects of the liquid injections on the foam friction factor130
5.12.40: Effects of liquid injections on the annular cuttings concentration131
5.12.41: Effects of the ROP on the annular pressure drops
5.12.42: Effects of the ROP on the annular mixture velocity
5.12.43: Effects of the ROP on the annular foam quality
5.12.44: Effects of the ROP on the annular foam density
5.12.45: Effects of the ROP on the annular foam effective viscosity137
5.12.46: Effects of the ROP on the annular foam flow power index
5.12.47: Effects of the ROP on the annular foam flow consistency index139
5.12.48: Effects of the ROP on the annular foam Reynolds Number140
5.12.49: Effects of the ROP on the annular foam friction factor141
5.12.50: Effects of the ROP on the annular cuttings concentration142
5.12.51: Effects of productivity index on the annular pressure drop142
5.12.52: Effects of productivity index on annular mixture velocity143
5.12.53: Effects of productivity index on the annular foam quality144
5.12.54: Effects of productivity index on the annular mixture density145
5.12.55: Effects of productivity index on annular effective viscosity146
5.12.56: Effects of productivity index on annular flow power index147
5.12.57: Effects of productivity index on annular flow consistency index148
5.12.58: Effects of productivity indexon annular Reynolds Number149
5.12.59: Effects of productivity indexon annular friction factor
5.12.60: Effects of productivity indexon annular cuttings concentration151
5.12.61: Effects of the surface back pressure on the annular pressure drop152
5.12.62: Effects of the surface back pressure on the annular mixture velocity153
5.12.63: Effects of the surface back pressure on the annular foam quality153
5.12.64: Effects of the surface back pressure on the annular mixture density154

5.12.65: Effects of surface back pressure on annular foam effective viscosity155
5.12.66: Effects of surface back pressure on annular foam flow power index156
5.12.67: Effects of surface back pressure on annular flow consistency index157
5.12.68: Effects of the surface back pressure on annular Reynolds Number158
5.12.69: Effects of surface back pressure on the annular foam friction factor159
5.12.70: Effects of surface back pressure on annular cuttings concentration160
5.12.71: Effects of the cuttings size on the annular mixture velocity161
5.12.72: Negligible effects of cuttings density on annular mixture rheology161
5.12.73: Optimum design of the foam hydraulics for vertical well drilling167
Chapter 6: Model Evaluation, Validation & History Matching169
6.1: Model evaluation with the first field case study
6.2: Model evaluation with the second field case study175
Chapter 7: Summary, Conclusions & Recommendations
7.1: Summary
7.2: Conclusions
7-3: Recommendations
References
Appendix A: Flow chart of the Computer program
Appendix B: Calculations of the gas compressibility factors (Z)202
Appendix C: Derivative of the cutting terminal (settling) velocity206
Appendix D: Derivative of pressure drop using conservation of the linear momentum

LIST OF TABLES

Table No.	Title Page	
Table 2.1	Physical constants for typical natural gas constituents	4
Table 2.2	Dranckhuk et al correlation constants	4
Table 4.1V	Values of coefficients b and c proposed by Cash-Karp41	
Table 5.1	The first input data for the foam drilling program49	9
Table 5.2	The Second input data for the foam drilling program6	5
Table 6.1	Input data and LWD pressures of the first Middle East well17	1
Table 6.2	Results of the comparison between LWD and the proposed model for the	
	Middle East first field case study17	′4
Table 6.3	Input data and bottomhole pressures of the Middle East second	
well	176	
Table 6.4	Results of the comparison between LWD and the proposed model for the	
	Middle East second well case study	0
	Summary of Equations for Z-factors, z, after Kingdom K. D	

LIST OF FIGURES

Figure Number	Title	Page	
Figure 2.1 Foam image,	69% quality (left), 80% qua	ality (middle) & 93% quality (right) 6	
Figure 2.2 Relative visco	osity as a function of foam q	quality for water based foam8	
Figure 2.3 Friction factor	or-Reynolds Number charts f	for foam flow in pipes17	
Figure 4.1 Discretized w	vellbore and calculations pat	h28	
Figure 4.2 Cuttings trans	sport property and mechanic	eal analysis on a single particle33	
Figure 5.1Foam Drilling	g Computer Program "Vertic	eal Wells"	
Figure 5.2Foam Drilling	g Computer Program "Prima	ry Information"44	
Figure 5.3Foam Drilling	g Computer Program "Fluid	Data and Surface Conditions"44	
Figure 5.4Foam Drilling	g Computer Program "Forma	ation Rocks and Fluid Data"45	
Figure 5.5Foam Drilling	g Computer Program "Drill S	String Data"46	
Figure 5.6Foam Drilling	g Computer Program "Well I	Data"47	
Figure 5.7Foam Drilling	g Computer Program "Calcul	lations"48	
Figure 5.8Well profile a	nd dimensions of the drill st	ring50	
Figure 5.9Pressure profi	le inside the drill string and	annulus51	
Figure 5.10Velocity pro	file inside the drill string and	d annulus52	
Figure 5.11Friction factor	or profile inside the drill stri	ng and annulus54	
Figure 5.12Profile of the	e compressibility factor inside	de the drill string and annulus54	
Figure 5.13Foam quality	y profile inside the drill strin	g and annulus56	
Figure 5.14Foam density	y profile inside the drill strin	ng and annulus57	
Figure 5.15Profile of for	am flow power index inside	the drill string and annulus58	
Figure 5.16Profile of for	am flow consistency index in	nside the drill string and annulus60	
Figure 5.17Profile of for	am effective viscosity inside	the drill string and annulus61	
Figure 5.18Profile of for	am Reynolds Number inside	the drill string and annulus62	
Figure 5.19Profile of the	e cuttings concentration in th	ne annulus63	
Figure 5.20Well profile	and dimensions of the drill s	string for the second case64	
Figure 5.21Effects of in	jection pressures drop inside	e the drill string66	5

Figure 5.22Effects of the injection pressures on the annular pressure drop67
Figure 5.23Effects of injection pressures on the foam velocity inside the drill string68
Figure 5.24Effects of the injection pressures on the annular mixture velocity68
Figure 5.25Effects of injection pressures on the foam quality inside the drill string69
Figure 5.26Effects of the injection pressures on the annular foam quality70
Figure 5.27Effects of injection pressures on the foam density inside the drill string71
Figure 5.28Effects of the injection pressures on the annular foam density72
Figure 5.29Effects of injection pressures on foam effective viscosity in the drill string73
Figure 5.30Effects of injection pressures on the annular foam effective viscosity73
Figure 5.31Effects of injection pressures on foam flow power index in the drill string74
Figure 5.32Effects of injection pressures on the annular foam flow power index75
Figure 5.33Effects of the injection pressures on the foam flow consistency index76
Figure 5.34Effects of injection pressures on the annular flow consistency index77
Figure 5.35Effects of injection pressures on Reynolds Number inside the drill string78
Figure 5.36Effects of injection pressures on the annular foam Reynolds Number79
Figure 5.37Effects of injection pressures on the friction factor inside the drill string80
Figure 5.38Effects of injection pressures on the annular foam friction factor80
Figure 5.39Effects of injection pressures on the annular cuttings concentration81
Figure 5.40Effects of geothermal gradient on the pressure drop inside the drill string82
Figure 5.41Effects of the geothermal gradient on the annular foam pressure drop83
Figure 5.42Effects of geothermal gradient on the foam velocity inside the drill string84
Figure 5.43Effects of the geothermal gradient on the annular foam velocity85
Figure 5.44Effects of geothermal gradient on the foam quality inside the drill string86
Figure 5.45Effects of the geothermal gradient on the annular foam quality87
Figure 5.46Effects of geothermal gradient on the foam density inside the drill string87
Figure 5.47Effects of the geothermal gradient on the annular mixture density88
Figure 5.48Effects of geothermal gradient on effective viscosity in the drill string89
Figure 5.49Effects of geothermal gradient on the annular foam effective viscosity90

Figure 5.50Effects of geothermal gradient on flow power index inside the drill string91
Figure 5.51Effects of the geothermal gradient on the annular foam flow power index92
Figure 5.52Effects of geothermal gradient on flow consistency index in the drill string93
Figure 5.53Effects of geothermal gradient on the annular flow consistency index94
Figure 5.54Effects of geothermal gradient on the Reynolds Number in the drill string94
Figure 5.55Effects of geothermal gradient on the annular foam Reynolds Number95
Figure 5.56Effects of geothermal gradient on the friction factor inside the drill string96
Figure 5.57Effects of geothermal gradient on the annular foam friction factor97
Figure 5.58Effects of geothermal gradient on the annular cuttings concentration98
Figure 5.59Effects of gas injections on the foam pressure drop inside the drill string99
Figure 5.60 Effects of the gas injections on the annular foam pressure drop99
Figure 5.61Effects of the gas injections on the foam velocity inside the drill string101
Figure 5.62Effects of the gas injections on the annular mixture velocity101
Figure 5.63Effects of gas injections on the foam quality inside the drill string102
Figure 5.64Effects of the gas injections on the annular foam quality103
Figure 5.65Effects of gas injections on the foam density inside the drill string104
Figure 5.66Effects of the gas injections on the annular mixture density105
Figure 5.67Effects of gas injections on the foam effective viscosity in the drill string106
Figure 5.68Effects of the gas injections on the annular effective viscosity
Figure 5.69Effects of gas injections on the foam flow power index in the drill string108
Figure 5.70Effects of the gas injections on the annular foam flow power index108
Figure 5.71Effects of gas injections on foam flow consistency index in the drill string110
Figure 5.72Effects of gas injections on the annular foam flow consistency index110
Figure 5.73Effects of gas injections on the Reynolds Number inside the drill string111
Figure 5.74Effects of the gas injections on the annular foam Reynolds Number112
Figure 5.75Effects of gas injections on the foam friction factor inside the drill string113
Figure 5.76Effects of the gas injections on the annular foam friction factor114
Figure 5.77Effects of the gas injections on the annular cuttings concentration115