

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPT.

OPTIMUM LOAD MANAGEMENT STRATEGY FOR ELECTRIC POWER SYSTEM INCLUDING ELECTRIC GENERATION FROM WIND ENERGY

A Thesis

Submitted in partial fulfillment for the requirement of the Degree of Master of Science in Electrical Engineering

By

Mohamed Ahmed Hamdy Tawfeek El-Mahlawy

B.Sc. Electrical Engineering, Ain Shams University, 2001

Supervised By

Prof. Dr. Mohamed Abd-El-Latif Badr

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

Associate Prof. Dr. Said Fouad Mohamed Mekhamer

Electrical Power & Machines Dept. Faculty of Engineering Ain Shams University

CAIRO-EGYPT 2016

Agreement Report

Student Name: Mohamed Ahmed Hamdy Tawfeek Elmahlawy

Thesis Title: Optimum Load Management Strategy for Electric Power

System Including Electric Generation from Wind Energy

Degree: Master of Science in Electrical engineering

Supervised By:

Prof. Dr. Mohamed Abd-El-Latif Badr Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Associate Prof. Dr. Said Fouad Mohamed Mekhamer Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Examiners Committee:

Prof. Dr. El-Saeed Abd-Elaziz Osman Electrical Power & Machines Dept.

Faculty of Engineering Al Azhar University

Prof. Dr. Mahmoud Abd-Elhamid Moustafa Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Prof. Dr. Mohamed Abd-El-Latif Badr Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

Associate Prof. Dr. Said Fouad Mohamed Mekhamer Electrical Power & Machines Dept.

Faculty of Engineering Ain Shams University

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master in Electrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for another degree or a qualification.

ACKNOWLEDGEMENT

I have the great honor to express my deepest gratitude and sincere thanks to **Prof. Dr. Mohamed Abd-El-Latif Badr** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for his kind supervision, guidance and continuous encouragement and for his helpful and fruitful discussions in the preparation of this thesis.

I wish to express my deepest gratitude and sincere appreciation to **Associate Prof. Dr. Said Fouad Mohamed Mekhamer** at Electrical power & Machines Department, Faculty of Engineering, Ain Shams University, for every good help and guidance during carrying this thesis.

Further, the great honor and my deepest gratitude and sincere thanks to my superiors, my colleagues, and my family (father, mother, brothers, and my wife), for their guidance and great helpful by supplying me with useful information and data and their moral supports until this thesis has been developed.

Mohamed El-Mahlawy

Cairo - 2016

Abstract

More growth in wind power generation, which was founded in Egypt in the coming years, the importance of wind power prediction has highlighted. However, wind power is very difficult for the modelling and forecasting. Despite the research in the field carried out, the prediction methods more efficient wind energy are sued. In this work two methods for predicting the generation of electricity from wind power are presented. The first method is the use the artificial neural network for predicting the energy production in the next database entry 10 minutes predicting wind speed meteorological authorities. The second method is the use of poly setting function for the wind power regression using the MATLAB program for the Zafarana site. For optimal management strategy generating capacity credit will be used in the future by the selected prediction methods for wind energy-Gabal El-Zeit wind farm site.

One of the most important economic benefits of wind energy is that it reduces the exposure of our economies to the volatility of fuel prices. This advantage is so great that simply could justify a higher proportion of wind energy in many countries. Governments need to correct market failures arising from external effects, since the costs and benefits of a home or a company buy or sells on the market of the costs and benefits for society are. One of the main aims of this study is to compare between Zafarana site and Ras Ghareb site from an economic and technical point of view. It is generally known that there national plans for adding new units to the existing network of wind energy. The calculation for both locations performed lending capacity will be decisive for the final selection.

LIST OF ABBREVIATIONS

RE Renewable Energy

NREA New and Renewable Energy Authority

T.O.E Ton oil equivalent

ANN Artificial neural network

JAUES Journal of Al Azhar university engineering sector

WPP Wind Power Plant

ARIMA Autoregressive Integrated Moving Average

PSO Particle Swarm Optimization

MSE Mean Squared Error

R Regression

MAPE Mean Absolute Percentage Error

SSE Sum Squared Error

CC Correlation Coefficients

SDE Standard Deviation of Error

PhPredicted wind power at 10 minutes hPhActual wind power at 10 minutes h

 \overline{P} Average wind power

N Number of predicted 10 minutes

e_h Predicted error at 10 minutes

GB Great Britain

ELCC Effective Load Carrying Capability

LOLE Loss Of Load Expectation

CF Capacity Factor CO2 Carbon Dioxide

S Saved money when using wind techniques
F Price of fuel per kWh using for generation of

conventional turbines

CONTENTS

	Page
STATEMENT	A
ACKNOWLEDGEMENT	В
ABSTRACT	C
LIST OF ABBREVIATIONS	D
CONTENTS	E
LIST OF TABLES	Н
LIST OF FIGURES	Н
CHAPTER 1: Introduction	
1.1. Introduction	1
1.2. Thesis Outlines	5
1.3. Published Work	6
CHAPTER 2: Historical Review	
2.1. Introduction	7
2.2. Short-term Wind Forecasting methods for selection of the most accurate expected results	7
2.3. Using Neural Networks for northeast Colorado Wind Power Plant (WPP) Prediction	. 8
2.4. Recent advances and future challenges of Germany wind power prediction	8
2.5. Wind power forecasting in the South Coast of Oaxaca, México	9
2.6. Wind Speed Prediction for Canada by using Neural Networks	9
2.7. Using polynomial representation for forecasting of the electric demand in Australia	10

CHAPTER 3: Mathematical Wind Power Forecasting Methods

3.1. Introduction	11
3.2. Definition of ANN based package for wind power generation forecast	11
3.3. Poly-fit program for wind power forecast	18
3.4. Error assessment for differential among error – based methods	19
CHAPTER 4: Application of Wind Power Forecast	
Methods to Egyptian Wind Farms	
4.1. Introduction	21
4.2. ANN application of wind power forecasting method	22
4.3. Poly fit application of wind power forecasting method	26
4.3.1. Third – order polynomial representation	26
4.3.1.1. Comparison of Third – order polynomial	28
representation with the actual curve	
4.3.2. Fifth – order polynomial representation	29
4.3.2.1. Comparison of Fifth – order polynomial	30
representation with the actual curve	
4.3.3. Seventh – order polynomial representation	31
4.3.3.1. Comparison of Seventh – order polynomial	32
representation with the actual curve	
4.3.4. Final comparison among the Third-order, Fifth-	33
order, and seventh-order polynomials	
representations with the actual curve	

CHAPTER 5: Evaluation of Wind Power Contribution a	ıt
the Peak Loads Using Capacity Credit	
Method	

5.1. Introduction	35
5.2. Different methods for calculation of capacity credit	36
5.3. Economics of wind power in Zafarana and Ras	39
Ghareb sites	
CHAPTER 6: Final Comparison among Forecasting	
Methods, and Capacity Credit Estimation	
6.1. Introduction	41
6.2. Results of the final comparison among the Third-	41
order, Fifth-order, and seventh-order polynomials	
representations with the actual curve	
6.3. Comparison between ANN and seventh-order	44
polynomials representations with the actual curve	
6.4. Comparison between Zafarana site and Ras Ghareb	47
site for the capacity credit estimation	
6.5. Comparison between Zafarana site and Ras Ghareb	47
site economically	
CHAPTER 7: Conclusion	
7.1. General Remarks	49
7.2. Conclusion	50
7.3. Suggested Future Work	50
APPENDIX	51
REFERENCE	53

LIST OF TABLES

Table No.	Title	Page
1	Results of the final comparison among the Third- order, Fifth-order, and seventh-order polynomials representations with the actual curve	43
2	Comparison between ANN and seventh-order polynomials representations with the actual curve	44

LIST OF FIGURES

Fig. No.	Title	Page
1-1	The percentage of the energy generation in Egypt including the percentage of wind energy	2
3-1	A biological neuron	12
3-2	The wind speed of Zafarana site over a long period in m/s	14
3-3	Output data of wind power in MATLAB program of Zafarana site	15
3-4	Starting the ANN in MATLAB program	16
3-5	Choosing the inputs and the outputs data	16
3-6	The ANN method shape after finishing the identifying on the MATLAB program	18

LIST OF FIGURESCont.

Fig. No.	Title	Page
4-1	Wind power relative to wind speed for manufacturing of Gamasa52 - 850 KW	22
4-2	Actual day of Gamesa 52 turbine.	23
4-3	By using ANN method for wind power forecasting	24
4-4	Actual wind power a day with ANN method of wind power forecasting	25
4-5	Third-order equation by Poly fit method	27
4-6	Third-order equation by Poly-fit method with the actual data	28
4-7	Fifth-order equation by Poly fit method	30
4-8	Fifth-order equation by Poly-fit method with the actual data	31
4-9	Seventh-order equation by Poly fit method	32
4-10	Seventh-order equation by Poly-fit method with the actual data	33
4-11	Third, Fifth, and Seventh-orders equation by Poly-fit method with the actual data	34
5-1	Share of wind power in the grid with load power and installed capacity in a day	38
5-2	Wind power of Zafarana and Ras Ghareb sites of 24 samples	39

LIST OF FIGURESCont.

Fig. No.	Title	Page
6-1	Third, Fifth, and Seventh-orders equation by Poly-fit method with the actual data	41
6-2	Seventh-orders equation by Poly-fit method comparing with ANN method with the actual data	45
6-3	Ras Ghareb wind power curve throughout the year by using ANN method	46

Chapter 1

Introduction

1.1. Introduction:

Power generation from renewable resources such as wind and solar power is fluctuated from hour to hour according to general weather conditions. This is different to fossil-fuel generators, which can normally be dispatched according to their operators' preferences.

As the use of wind generation technologies increases, the variable nature of this output will become a more important feature in power systems. In particular, it will have an impact on the amount of capacity that needs to be installed to meet peak system demand, and on the operating patterns of other generators.

The total installed capacity in Egypt in 2013/2014 is 32015 MW, while the wind power participates by 550 MW only (about 1.7%).

The real indicator of the wind participation in the generation of electricity in Egypt is the wind energy which is about 0.8 % of the generated energy in Egypt as shown in fig. (1-1).[1]

Renewable energy (RE) is the energy which brings from many resources as sunlight and wind which is naturally rejuvenation [2]. The present strategy target in Egypt is to satisfy twenty percentage of the electric energy demand from renewable energy resource by the year 2022,

including about twelve percentages from wind power, 8% from others RE sources.

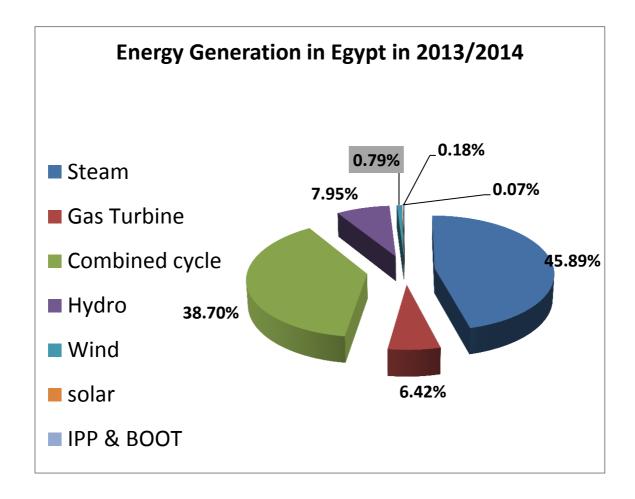


fig. (1-1) shows the percentage of the energy generation in Egypt including the percentage of wind energy.

Egypt has relied a resolution, is planned to cover twenty percentage of the generated electricity by renewable energy by 2022, including twelve percentage contributions from wind energy, depending mainly on about 7200 MW grid-connected wind farms.

An area of about 80 km² has been provided for NREA implement wind farms connected to the network. Site infrastructure has been finished, with high substation, buildings for workers, workshop, warehouse and high ways. In addition, an area of about 64 km² has been provided in the

west of the site as an extension to the same place. Since 2001 the number of large wind farms with a capacity of about 550 MW in cooperation with Germany, Denmark, Spain and Japan were founded.

The Zafarana wind farms are now working in complete interconnection with the unified electric grid in Egypt.

Generated Electricity is about 6.6 Billion kWh, Fuel Saving is about 1.4 million ton oil equivalent (T.O.E), and for reducing the emissions is about 3.3 million ton carbon dioxide.

The February 19, 2015 a contract was signed between New and Renewable Energy Authority (NREA) and the Spanish company Gamesa Olica on the west coast of the Gulf of signed to a wind power plant time to implement 220 MW in Gabal El Suez, with a total of around 220 million euros and the deadline for the application of this investment is approximately three years.

The project is established by the Japanese government through the Japanese International Cooperation Agency, about thirty eight billion Japanese yen with repayment period forty years, including a ten years donation period with interest rate of 0.3%.

This project is the largest wind power plant which NREA has been carried out. The energy generated from this project is expected to be around one billion kilowatt hours will save about two hundred and ten thousand T.O.E per year, and to achieve the reduction of about 550 000 ton of carbon dioxide per year.