

# **Donor Biliary Complications after Living Donor Liver Transplantation**

Essay

Submitted for Partial Fulfillment of Master's Degree in General Surgery

By

### **Mohamed Alaaeldin Maklad**

M.B.,B.CH

Supervised by

### Prof. Dr. Refaat Refaat Kamel

Professor of general surgery
Faculty of Medicine-Ain Shams University

### Prof. Dr. Hany Saeed Abdelbaset

Assistant professor of general surgery Faculty of Medicine-Ain Shams University

### Dr. Ahmed Nabil Kamal

Lecturer of general surgery
Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2016



سورة التوبة الآية (١٠٥)



- Praises is to Allah and to Him alone. Every nerve ending, joint, limb, organ, and faculty of mine is indebted to Allah (S.W.T.) for all the blessings He granted me allowing me to Alhamdulillah (praise be to Him) successfully finish this essay. Words are insufficient to describe my gratitude and appreciation to Him in the whole process of the preparation, compiling and writing of this essay. In moments of distress, He guided me, showed me what to do, removed all obstacles from and lighted my path, inspired me, eased the task of writing, and gave me the energy so that I may put down words on paper. Without Him I would not have been able to undertake this task. What matters to me is that He accepts this contribution that He inspired me to write. Thank You Allah!
- I am indebted to my parents for their encouragement and support. They are a great inspiration to me, and their love for knowledge is the founding grounds for my love of knowledge. They invest so much in educating me and always encourages me to reach for the stars. I am truly indebted to both of them for their warmth and I hope that they would be proud of my achievements.

My appreciation and gratefulness extends to my supervisors, Prof. Dr. Refaat Refaat Kamel Professor of General Surgery, Faculty of Medicine, Ain Shams University and Prof. Dr. Hany Saeed Abdelbaset, Assistant Professor of General Surgery, Faculty of Medicine, Ain Shams University and Dr. Ahmed Nabil Kamal, Jecturer of General Surgery, Faculty of Medicine, Ain Shams University, for their valuable time, guidance, insights, unconditional support, feedback, patience, encouragement, faith, opportunities to present my essay, and confidence in me over the time that made this formidable task attainable.

Mohamed Alaaeldin Maklad



## **Contents**

| Subjects           |                        | Page            |
|--------------------|------------------------|-----------------|
| • List of Abbrevia | ations                 | I               |
| • List of figures  |                        | III             |
| • List of tables   |                        | VII             |
| • Introduction     |                        | 1               |
| • Aim of work      |                        | 4               |
| • Chapter 1 : An   | atomy of The Biliary S | System5         |
| • Chapter 2:       | Donor preparation      | and Operative   |
| Te                 | echniques              | 31              |
| • Chapter 3:       | Postoperative          | Donor Biliary   |
| C                  | omplications           | 48              |
| • Chapter 4 : Ma   | nagement of Biliary C  | complications62 |
| Summary            |                        | 77              |
| References         |                        | 81              |
| Arabic summar      | v                      |                 |

### List of Abbreviations

**AFP** : Alpha Feto Protein

**APCR**: Activated Protein C resistance

**BMI** : Body Mass Index

**CA19.9** : Cancer Antigen 19.9

**CBD** : Common Bile Duct

**CEA** : Carcinoembryonic Antigen

**CMV** : Cytomegalo Virus

**CT** : Computed Tomography

**DDLT**: Deceased Donor Liver Transplant

**EBD** : Endoscopic Balloon Dilatation

**EBV** : Epstein-Barr Virus

**ECG** : Electrocardiography

**ENBD** : Endoscopic Nasobiliary Drainage

**ERCP**: Endoscopic Retrograde

Cholangiopancreatography

**FNA**: Fine Needle Aspiration

**GRBWR:** Graft Recipient Body Weight Ratio

**HIV**: Human Immunodeficiency Virus

**HJ** : Hepatecojejunostomy

**HSV**: Herpes Simplex Virus

**Ig** : Immunoglobulin

**IOC** : Intraoperative Cholangiogram

#### 🕏 List of Abbreviations 🗷

**ISGLS**: International Study Group For Liver Surgery

**LB**: Liver Biopsy

**LDLT**: Living Donor Liver Transplant

**LHA** : Left Hepatic Artery

**LHD** : Left Hepatic Duct

**LPV**: Left Portal Vein

**MDCT**: Multi-Detector Computed Tomography

**MRCP**: Magnetic Resonance Cholangiopancreatograph

**OLT** : Orthotopic Liver Transplant

**PDS**: Polydioxanone Sulfate

**PTBD**: Percutaneous Transhepatic Biliary Drainage

**PTC**: Percutaneous Transhepatic Cholangiography

**PV** : Portal vein

**RAD** : Right Anterior Duct

**RHA** : Right Hepatic Artery

**RHD**: Right Hepatic Duct

**RPD**: Right Posterior Duct

**RPV**: Right Portal Vein

**SD** : Standard Deviation

**TSH**: Thyroid Stimulating Hormone

# List of Figures

| Figure No            | Title                                    | Page |
|----------------------|------------------------------------------|------|
| <b>Figure (1.1):</b> | The classic anatomical division of the   | 5    |
|                      | liver into two main lobes and two        |      |
|                      | accessory lobes.                         |      |
| <b>Figure (1.2):</b> | The functional division of the liver     | 10   |
|                      | using Couinard's original drawings.      |      |
| <b>Figure (1.3):</b> | Variations in the confluence of the      | 16   |
|                      | sectorial and hepatic ducts              |      |
| <b>Figure (1.4):</b> | Variations in the drainage of the        | 19   |
|                      | intrahepatic ducts into the cystic duct. |      |
| <b>Figure (1.5):</b> | The anatomy of the extrahepatic biliary  | 20   |
|                      | system.                                  |      |
| <b>Figure (1.6):</b> | The choledochodudenal junction. The      | 23   |
|                      | sphincter muscle is predominantly        |      |
|                      | circular in orientation, and extends     |      |
|                      | beyond the wall of the duodenum.         |      |
|                      | There is a small extension along the     |      |
|                      | pancreatic duct.                         |      |
| <b>Figure (1.7):</b> | Five patterns of the hepatic duct        | 25   |
|                      | confluence according to Haung et al      |      |
| <b>Figure (2.1):</b> | Magnetic resonance angiogram             | 33   |
|                      | showing the relevant hepatic             |      |

### 🕏 List of Figures 🗷

| Figure No            | Title                                     | Page |
|----------------------|-------------------------------------------|------|
|                      | vasculature in a potential right lobe     |      |
|                      | donor.                                    |      |
| <b>Figure (2.2):</b> | Magnetic resonance cholangiogram          | 33   |
|                      | showing normal biliary anatomy with a     |      |
|                      | single right hepatic duct draining the    |      |
|                      | right lobe.                               |      |
| Figure               | The first Intraoperative                  | 36   |
| (2.3A):              | cholangiography performed to delineate    |      |
|                      | biliary anatomy.                          |      |
| Figure               | The isolation of the right hepatic duct   | 38   |
| (2.3B):              | along with its sheath.                    |      |
| Figure               | Placement of 2 Parallel radio-opaque      | 39   |
| (2.3C):              | markers perpendicular to the long axis    |      |
|                      | of the right hepatic duct.                |      |
| Figure               | The second Intraoperative                 | 39   |
| (2.3D):              | cholangiography after placement of        |      |
|                      | markers.                                  |      |
| Figure               | Complete transaction of the right         | 40   |
| (2.3E):              | hepatic duct between the markers. The     |      |
|                      | cut surface of the liver is clean with no |      |
|                      | burns/bleeding/bile leaks.                |      |
|                      |                                           |      |

### 🕏 List of Figures 🗷

| Figure No            | Title                                    | Page |
|----------------------|------------------------------------------|------|
| Figure               | Completed closure of the right hepatic   | 41   |
| (2.3F):              | duct stump (1), hilar plate (2), and the |      |
|                      | caudate (3).                             |      |
| Figure               | The third and final IOC done after       | 41   |
| (2.3G):              | closure of the right hepatic duct.       |      |
| Figure (3):          | Drawings show Bismuth classification     | 57   |
|                      | of benign bile duct strictures.          |      |
| <b>Figure (4.1):</b> | Retrograde cholangiograms                | 66   |
|                      | demonstrating biliary leakage.           |      |
| <b>Figure (4.2)</b>  | Showing The leakage was resolved         | 67   |
|                      | after PTBD (asterisk), but the contorted |      |
|                      | stricture remained.                      |      |
| <b>Figure (4.3)</b>  | Cholangiograms of all the patients       | 68   |
|                      | showing biliary leakage. The maximum     |      |
|                      | angle between the common hepatic duct    |      |
|                      | and the left hepatic duct was measured   |      |
|                      | by using fluoroscopy.                    |      |
| <b>Figure (4.4)</b>  | Representative cholaniograms of biliary  | 70   |
|                      | complications in right-lobe donors for   |      |
|                      | LDLT. (A) Leakage of bile at the         |      |
|                      | biliary stump (B) The leakage is         |      |
|                      | resolved after endoscopic nasobiliary    |      |

### 🕏 List of Figures 🗷

| Figure No           | Title                                   | Page |
|---------------------|-----------------------------------------|------|
|                     | drainage. (C) Stricture of a biliary    |      |
|                     | stump. (D) Insertion of 7F              |      |
|                     | endoprosthesis.                         |      |
| <b>Figure (4.5)</b> | Representative cholaniograms of biliary | 71   |
|                     | complications in right-lobe donors for  |      |
|                     | LDLT. Extensive biliary leakage.        |      |
| <b>Figure (4.6)</b> | Cholangiograms showing Biliary          | 73   |
|                     | leakage (arrowhead)                     |      |
| <b>Figure (4.7)</b> | 7 Flow diagram of the outcomes of 55    | 74   |
|                     | donors for LDLT with biliary            |      |
|                     | complications.                          |      |
| Figure (5):         | Mechanism for development of            | 79   |
|                     | recurrent biliary leakage or biliary    |      |
|                     | stricture.                              |      |

# **List of Tables**

| Table No  | Title                                    | Page |
|-----------|------------------------------------------|------|
| Table (1) | Table show schematic diagram of the      | 8    |
|           | first order division of liver.           |      |
| Table (2) | Table show schematic diagram of the      | 9    |
|           | second order division of liver.          |      |
| Table (3) | Table show schematic diagram of the      | 12   |
|           | third order division of liver.           |      |
| Table (4) | Anomalies of the gall bladder.           | 19   |
| Table (5) | Evaluation protocol for potential living | 32   |
|           | liver donors.                            |      |
| Table (6) | Clavein-dindo Classification of surgical | 59   |
|           | complications.                           |      |
| Table (7) | Clinical examples of Clavein-dindo       | 60   |
|           | grades of donor complication in a study  |      |
|           | of 160 donor by Pamecha et al            |      |
| Table (8) | Donor biliary complications in several   | 61   |
|           | studies with Clavein-dindo grading.      |      |

### **Abstract**

Biliary complications after donor hepatectomy can result in significant morbidity. In this essay we try to research etiologies, risk factors, associations of donor biliary complications, also management and prevention of these complications according to multiple studies in multiple transplant centers worldwide. In conclusion, with careful donor selection and a standardized surgical technique, biliary complications can be minimized.

### **Keywords**

Living donor liver transplantation. Donor biliary complications. Biliary leak. Biliary stricture. Endoscopic management.

### Introduction

Transplant is the only known curative treatment option for end-stage liver insufficiency patients (*Jeon and Lee*, 2011).

Organs from live donors have provided a new form of hope for those who need liver transplants. Living-donor liver transplants offer the advantages of direct organ availability compared to deceased-donor transplants, the ability to conduct the procedure under the best conditions, and a reduced rate of primary organ dysfunction because of short-term cold ischemia (*Sugawara et al.*, 2002).

However, living-donor liver transplants also give rise to some ethical concerns. Donor hepatectomy is the only surgical procedure that exposes the patient to a major and possibly fatal operation with no benefit to the donor, while providing the possibility of saving the recipient's life (*Cotler et al.*, 2007).

Liver transplants were first conducted in pediatric patients with liver disease, using the parents of the patients as donors. The low rate of donor complications, high success rates in liver transplant recipients, and emotional satisfaction of the parents served to attenuate the ethical issues in pediatric liver transplants (*Roberts et al.*, 2004).

This success achieved in pediatric liver transplants has paved the way for adult living-donor liver transplants which are characterized by the removal of 30% to 60% of the total volume of the donor's liver. Adult living-donor liver transplants had become widespread until the first donor death in 2002 (*Dirican et al.*, 2015).

Despite geographic variations, today liver transplants are generally performed using live donors; thus, donor survival should be given the highest priority with consideration to ethical issues. Although the actual donor mortality rate is unknown, 19 donor deaths were reported in the largest series of patients to date and the average incidence of mortality was 0.2% (*Trotter et al.*, 2006).

Hence, standardization of donor complications requires use of the modified Clavien-Dindo classification, and use of liver transplant databases, such as the European Liver Transplant Registry and the United Network for Organ Sharing, are required for storing the results (*Clavien et al.*, 1994).

Although multiple donor hepatectomy procedures have been described, right and left lobe hepatectomy and left lateral segmentectomy are the most commonly applied. Liver insufficiency and sepsis are commonly deemed