

Ain Shams University Faculty of Science Biochemistry Department

Presepsin as a novel diagnostic and prognostic sepsis biomarker

A thesis submitted in partial fulfillment of the requirements for M.Sc. degree in Biochemistry

By

Heba Nabil Mahmoud Bendary

B.Sc. in Biochemistry (2007)

Under the supervision of

Prof. Dr. Fahmy Tawfik Ali

Professor of Biochemistry Faculty of Science Ain Shams University

Colonel Dr. Mostafa M. Elnakeeb

Head of Microbiology and Immunology Assistant Professor of Biochemistry Department El-Maadi Military Hospital

Dr. Mohamed A. M. Ali

Faculty of Science Ain Shams University

Faculty of Science Ain Shams University 2016

DEDICATION

This thesis is proudly dedicated to my beloved family

(my parents, my husband and my son Suhail)

Thanks for your endless love, prayers, sacrifices and support

Heba Nabil Mahmoud Bendary

This thesis has not been submitted to this or any other university

Heba Nabil Mahmoud Bendary

ACKNOWLEDGEMENT

First of all, cordial thankfulness to "Allah" who enabled me to finish this piece of work appropriately.

I would like to express my deep appreciation and gratitude to *Prof. Dr. Fahmy Tawfik Ali*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for his consistent supervision, constructive suggestions and meticulous scientific help.

Words are not enough and fail to express my deep thanks and gratitude to *Dr. Mohamed Ahmed Mohamed Ali*, Assistant Professor of Biochemistry, Faculty of Science, Ain Shams University, for his valuable encouragement, sincere guidance and wholehearted support throughout this work.

My deepest appreciation and thanks are offered to *Colonel Dr. Mostafa M. Elnakeeb*, Head of Microbiology and Immunology Department, El-Maadi Military Hospital, for his great support, helpful advice, valuable technical assistance and fruitful comments.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, my lovely sincere husband for their moral support and patience during this work.

Heba Nabil Mahmoud Bendary

CONTENTS

	Page
❖ List of Abbreviations	i
❖ List of Figures	iv
❖ List of Tables	viii
* Abstract	
* Introduction	1
❖ Aim of the work	6
* Review of literature	7
• Sepsis	7
✓ Definition	7
✓ Epidemiology	12
✓ Etiology	13
✓ Site of infection	
✓ Sepsis risk factors	20
I. Infection and comorbidities	20
II. Genetic risk factors	23
III. Environmental risk factors	24
IV. Special populations	26
1. Malignancy	26
2. Obesity	27
3. Human immunodeficiency vi	irus 28
4. Children	28
5. Gender	29
6.Race	30
Sepsis clinical features	32
Sepsis pathophysiology	36
I. Aberrant inflammatory cascade in sep	osis 37

1. Hyperinflammatory response	39
2. Blunted inflammatory response	40
3. Unknown inflammatory response	41
II. Dysregulated coagulation (link between	
inflammation and coagulation)	43
III. Cellular dysfunction	47
1. Lymphocytes apoptosis	48
2. Neutrophil hyperactivity	49
3. Endothelial cell failure and	
apoptosis in other cells	52
IV. Metabolic alteration	54
✓ Prognosis of sepsis	55
• Biomarkers for sepsis	56
I. Acute-phase protein biomarkers	
1) C-reactive protein	57
2) Lipopolysaccharide-binding protein	59
3) Procalcitonin	60
4) Pentraxin	64
5) Other acute-phase proteins	65
II. Cytokines/chemokines biomarkers	66
1. Macrophage migration inhibitory	
factor	68
2. High-mobility-group box 1	69
III. Coagulation biomarkers	70
IV. Soluble receptor and cell surface	
markers	72
1. Triggering receptor expressed on	
myeloid cells-1	72
2. Soluble form urokinase-type	
plasminogen activator receptor	
(suPAR)	73
3. Proadrenomedullin	75
4. Polymorphonuclear CD64 index	76
5. Cell surface markers	77

	 V. Presepsin as a sepsis biomarker Biological characteristics of presepsin Role of presepsin in sepsis Diagnostic value of presepsin Prognostic value of presepsin 	77 77 80 81 83
*	Subjects and Methods	84
	 Study design Clinical diagnosis Outcome assessment Biochemical investigations Measurement of plasma presepsin levels Measurement of plasma PCT and CRP 	84 84 85 87 87
	levels • Statistical analysis	92 101
*	Results	103
	 Demographic and clinical characteristics of the study population on admission Levels of presepsin, PCT and CRP in the study population Kinetics of presepsin, PCT and CRP levels during ICU stay Correlation between presepsin, PCT and CRP levels Diagnostic accuracy of presepsin, PCT and CRP 	103112114122135
•	 Prognostic value of presepsin, , PCT, CRP and APACHE II score 	138
**	Discussion	149
*	Summary	162

References 167

- **❖** Arabic summary
- **❖** Arabic abstract

LIST of ABBREVIATIONS

Abbreviation

Full name

ACCP/SCCM: American college of chest

physicians/society of critical care medicine

AUC : area under the curve

aPPT : activated partial thromboplastin time ARDS : acute respiratory distress syndrome

APC : activated protein C

APACHE II : acute physiology and chronic health evaluatio

ADM: adrenomedullin

ALP : alkaline phosphatase

ANOVA : one-way analysis of variance

BP : blood pressure CRP : C-reactive protein

CD14 : cluster of differentiation 14 C5a : complement components 5a

C3a : complement components 3a obstetrics

C5aR : c5a receptor protein CLRs : c-type lectin receptors

CXC : chemotaxis

C1q : complement component 1q

CARS : compensatory anti-inflammatory response

syndrome

DAMPs : danger-associated molecular patterns
DIC : disseminated intravascular coagulation

DAMPs : danger molecules that perpetuate

ELAM-1 : endothelial leukocyte adhesion molecule 1 EPIC : European prevalence of infection in intensive

E. coli : Eschershia coli

ELISA : enzyme-linked immunosorbent assay

EDTA : ethylenediaminetetraacetic acid

G-CSF : granulocyte colony-stimulating factor

GM-CSF : granulocyte macrophage colony-stimulating

factor

HMGB1 : high-mobility-group protein B1

HRP : horseradish peroxidase HIV : immunodeficiency virus

HAART : highly active antiretroviral therapy ICAM-1 : intercellular adhesion molecule 1

IL-6 : interleukin-6

ICU : intensive care unit IQR : interquartile range

IL-1ra : IL-1 receptor antagonist

LTA : lipoteichoic acid LPSs : lipopolysaccharides LBPs : LPS-binding proteins

EPCR : endothelial cell protein C receptor
 MIF : macrophage migration inhibitory factor
 mHLA-DR : monocytic human leukocyte antigen-DR

MRSA : low-grade serous carcinoma

MAb : monoclonal antibody

MASP-2 : mannose-binding protein-associated serine

protein-2

NOD2 : domain-containing protein 2

NLRs : nucleotide-binding oligomerization domain-li

receptors

NF-κB : nuclear factor kappa B

PAMPs : pathogen-associated molecular patterns

NPV : negative predictive value PRRs : pattern recognition receptors

PT : prothrombin time

PAI-1 : plasminogen activator inhibitor-1

PPV : positive predictive value

PAR1 : protease activated receptor 1

PMN : polymorphonuclear

PCT : procalcitonin
Pro : prothrombin
PTX3 : pentraxin 3

RLRs : retinoic acid inducible gene 1–like receptors

ROC : receiver operating characteristic

SIRS : systemic inflammatory response syndrome sCD14-ST : soluble cluster of differentiation 14 subtype

sTNF : soluble tumor necrosis factor

suPAR : soluble urokinase type plasminogen

activator receptor

sTREM-1 : soluble triggering receptor expressed on

myeloid cells 1

SD : standard deviation

S1P1 : sphingosine-1 phosphate receptor 1

SAP : serum amyloid P component

SAPS II : simplified acute physiology score II

TLR4 : toll-like receptor 4
TNF : tumor necrosis factor

T : thrombin

TM: thrombomodulin TF: tissue factor

TREM-1 : triggering receptor expressed on myeloid

cells 1

UK : United Kingdom US : United States

uPA : urokinase-type plasminogen activator

${\it LIST of FIGURES}$

Figure	Legend	Page
No.		
1	Definition of SIRS, sepsis, severe sepsis and septic shock.	9
2	Overview of the systemic inflammatory	
	response syndrome course	11
3	The host response in sepsis	38
4	Control of coagulation in normal and inflamed vasculature	44
5	Organ failure in severe sepsis and dysfunction of the vascular endothelium and mitochondria	45
6	A proposed model for the dysregulation of neutrophil recruitment to bacterial infection in nonpulmonary tissue under normal	
	conditions (left) and in sepsis (right)	51
7	Mechanism of presepsin secretion	79
8	The PATHFAST test principle	89
9	The PATHFAST reagent cartridge	90
10	The Ichroma test principle	94
11	The Ichroma PCT Test setup and procedure	97
12	The Ichroma CRP Test setup and procedure	100
13	Demographic characteristics of SIRS patients	105
14	Clinical backgrounds of SIRS patients (A) and SIRS patients with or without sepsis	
	(B)	107
15	Microbiology findings of SIRS patients	109
16	APACHEII score on admission of SIRS	

	and the sale	111
1.7	patients	111
17	28-day mortality rate of SIRS patients	111
18	Levels of presepsin (A), PCT (B) and CRP	
	(C) on admission in SIRS patients in	
	comparison to controls	113
19	Serial measurements of presepsin levels on	
	admission and at days 1, 3, 7 and 15 in	
	SIRS patients stratified by the presence (A)	
	or absence (B) of sepsis	117
20	Serial measurements of PCT levels on	
	admission and at days 1, 3, 7 and 15 in	
	SIRS patients stratified by the presence (A)	
	or absence (B) of sepsis	119
21	Serial measurements of CRP levels on	
	admission and at days 1, 3, 7 and 15 in	
	SIRS patients stratified by the presence (A)	
	or absence (B) of sepsis	121
22	Correlation between presepsin and PCT	
	biomarkers on admission and at day 1 in	
	patients with or without sepsis. A1; patients	
	with sepsis on admission; A2; patients	
	without sepsis on admission; B1; patients	
	with sepsis on day 1; B2; patients without	
	sepsis on day 1	126
23	Correlation between presepsin and PCT	
	biomarkers at days 3 and 7 in patients with	
	or without sepsis. C1; patients with sepsis	
	on day 3; C2; patients without sepsis on	
	day 3; D1; patients with sepsis on day 7;	
	D2; patients without sepsis on day 7	127
24	Correlation between presepsin and PCT	
	biomarkers at day 15 in patients with or	
	without sepsis. E1; patients with sepsis on	
	day 15; E2; patients without sepsis on day	

	15	128
25	Correlation between presepsin and CRP	
	biomarkers on admission and at day 1 in	
	patients with or without sepsis. A1; patients	
	with sepsis on admission; A2; patients	
	without sepsis on admission; B1; patients	
	with sepsis on day 1; B2; patients without	
	sepsis on day 1	129
26	Correlation between presepsin and CRP	
	biomarkers at days 3 and 7 in patients with	
	or without sepsis. C1; patients with sepsis	
	on day 3; C2; patients without sepsis on	
	day 3; D1; patients with sepsis on day 7;	
	D2; patients without sepsis on day 7	130
27	Correlation between presepsin and CRP	
	biomarkers at day 15 in patients with or	
	without sepsis. E1; patients with sepsis on	
	day 15; E2; patients without sepsis on day	
• 0	15	131
28	Correlation between PCT and CRP	
	biomarkers on admission and at day 1 in	
	patients with or without sepsis. A1; patients	
	with sepsis on admission; A2; patients	
	without sepsis on admission; B1; patients	
	with sepsis on day 1; B2; patients without	122
20	sepsis on day	132
29	Correlation between PCT and CRP	
	biomarkers at days 3 and 7 in patients with	
	or without sepsis. C1; patients with sepsis	
	on day 3; C2; patients without sepsis on	
	day 3; D1; patients with sepsis on day 7;	133
30	D2; patients without sepsis on day 7 Correlation between PCT and CRP	133
50	biomarkers at day 15 in patients with or	
	oromarkers at day 15 m patients with or	