

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Assessment of Rapeseed Oil As An Alternative Fuel For Diesel Engine

By Dalia Mahmoud Nabil Yousif

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Nabil M. Abdel Moneim

Prof. Of Chemical Engineering Faculty of Engineering Cairo University Dr. Ola Abbas Megahed

Ola Abbas

Researcher (PHD)
Fats and Oil Laboratory
National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

April 2003

B 1.17 ii

Assessment of Rapeseed Oil As An Alternative Fuel For Diesel Engine

By
Dalia Mahmoud Nabil Yousif

Shadia Aggour

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

Approved by the Examining Committee:

Prof. Dr. Nabil Mahmoud Abdel Moneim, Thesis main advisor

Prof. Dr. Ferial Abbas Zaher, Member

Fencel Zaha

Prof. Dr. ElSayed Abdel Meguid Sherif

Sayed Shevil

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

April 2003

Pro Tu

Hiv

1

3

6

6

J.

or

d:

SOF **

lils

A. et sign H

-1

6z

14

49

Table of Contents

		page
List of Ta	ables	iii
List of Fi	gures	v
Acknowle	edgement	vii
Summary	Y	viii
CHAPTE	CR 1 INTRODUCTION	1
CHAPTE	ER 2 LITERATURE REVIEW	3
2.1	Recovery Process of Oil from Rapeseed	3
2.2	Physical Properties of Rapeseed Oil	6
2.3	Engine Performance using Vegetable Oils and their Blends with Diesel Fuel	6
	2.3.1 Short Term Testing	9
	2.3.2 Long Term Endurance Tests-Direct Injection Engines	13
	2.3.3 Long Term Endurance Tests-Indirect Injection Engines	17
	2.3.4 Exhaust Emission Using Vegetable Oils as Diesel	19
*	Engine Fuel	
2.4	Trials Made to Minimize the Problems Associated with Vegetable Oils Use as Fuel	21
	2.4.1 Chemical Modification of Vegetable Oils	21
	2.4.1.1 Vegetable Oil Esters as Diesel Engine Fuel	23
	2.4.1.2 Vegetable Oils Cracking	34
	2.4.2 Vegetable Oils Blending with Alcohols	37
	2.4.3 Propane Fumigation	39
2.5	Effect of Storage on Vegetable Oil Quality as a Fuel	39
СНАРТЕ	CR 3 EXPERIMENTAL WORK	41
СНАРТЕ	CR 4 RESUTLS AND DISCUSSION	49

4.1 Fatty Acid Composition of Rapeseed Oil	49
4.2 Effect of the Transesterification Conditions on the Product	
Yield	49
4.3 Assessment of the Rapeseed Oil Chemically Modified Produ	icts 50
as Fuel	30
4.3.1 The Esterified Products	50
4.3.1.1 ASTM Distillation Characteristic of the Esterifie	d 50
Products of Rapeseed Oil	30
4.3.1.2 The Properties of the Esterified Products of	
1; Rapeseed Oil Compared to the Egyptian Standard	59
Specifications of a Diesel Fuel	
4.3.2 The Cracked Products	61
4.3.2.1 ASTM Distillation of Cracked Product	61
4.3.2.2 The Properties of the Chemically Modified Cracke	ed 68
Product	
\mathcal{J}'	
CHAPTER 5 ENGINE TESTING AND THE ENVIRONMENTA	L
ASSESSMENT OF CRACKED RAPESEED OIL	71
AND ITS ESTERS	
5.1 Experimental Work	71
5.2 Results 另	75
CHAPTER 6 CONCLUSIONs	79
REFERENCES	80
£8	

69

 Γ

List of Tables

		Page
Table 2.1	The Physical Properties of Rapeseed Oil	6
Table 3.1	Chemical Formula, Molecular Weight and Boiling Point of the Alcohols Used for Oil Esterification	43
Table 4.1	Fatty Acid Composition of Rapeseed Oil (wt%)	49
Table 4.2	Conversion Percentage of Esterifying Rapeseed Oil Using Different Catalysts	51
Table 4.3	ASTM Distillation of Esterified Rapesedd Oil Sample	54
Table 4.4	Light and Heavy Fractions of Esterified Products of Rapeseed Oil with Methyl and Ethyl Alcohols	54
Table 4.5	The Distillation Temperatures of the 10, 50, 90% Cuts of Esterified Rapeseed Oil	56
Table 4.6	Water Content, Sulfur Content, Ash Percentage and Carbon Residue of Esterified Sample of Rapeseed Oil Compared to Diesel Fuel	60
Table 4.7	Physical Properties of the Estrified Products of Rapeseed Oil Compared to Diesel Fuel	60
Table 4.8	Calorific Value, Heating Value, Flash point and Cetane Number of Estrified Products of Rapeseed Oil Compared to Diesel Fuel	60
	6 CONCLUS	2. 2.
Table 4.9	ASTM Distillation for Cracked Sample	63
Table 4.10	The Distillation Temperature of the 10, 50, 90% Distilled Volume of Cracked Rapeseed Oil)/(131) 63
Table 4.11	Composition of the Light and Heavy Fractions of Cracked Rapeseed Oil	63
Table 4.12	Physical Properties of Cracked Sample Rapeseed Oil Compared to Diesel Fuel	69

Table 4.13	Water Content, Sulfur Content, Ash Percentage and Carbon Residue of Cracked Sample of Rapeseed Oil Compared to Diesel Fuel	70
Table 4.14	Calorific Value, Heating Value, Flash point and Cetane Number of Cracked Sample Compared to Diesel Fuel	70
Table 5.1	Technical Data for Multicylinder Compression Ignition (CIE), Diesel Engine	73
Table 5.2	Results of Engine Testing of Diesel Fuel and Esterified Samples of Rapeseed Oil (RPM = 1420)	75
Table 5.3	Results of Engine Testing of Diesel Fuel and Cracked Sample of Rapeseed Oil (RPM = 1420)	76
Table 5.4	Exhaust Composition from the Combustion of Diesel. Esterified and Cracked Products	76

ne ton

1.11

gr gr

n;y 'atalyst

1.9

i.C

64

List of Figures

Figure 2.1	The processing Steps of Rapeseed Oil Extraction	Page 5
Figure 3.1	World Production of Rapeseed Oil	43
Figure 3.2	Experimental Set up for Oil Transesterification	44
Figure 3.3	Experiment Set up for Oil Cracking	45
Figure 4.1	Conversation Percentage of Rapeseed Oil to its Ester with Methyl Alcohol Using H ₂ SO ₄ and KOH Catalysts	.2 <mark>5</mark> 2 [acle 5.1
Figure 4.2	Conversation Percentage of Rapeseed Oil to its Ester with Ethyl Alcohol Using H ₂ SO ₄ and KOH Catalysts	Fable 5.2 62
Figure 4.3	ATSM Distillation Curves of Estrified Rapeseed Oil Sample with Methylated Alcohol Using H ₂ SO ₄ and KOH as Catalysts	55
Figure 4.4	ATSM Distillation Curves of Estrified Rapeseed Oil Samples with Ethyl Alcohol Using H ₂ SO ₄ and KOH as Catalysts	55
Figure 4.5	Volumetric Percentage of the Light and Heavy Fraction of Methyl Ester with H ₂ SO ₄	57
Figure 4.6	Composition of the Light and Heavy Fraction of Methyl Ester with KOH	57
Figure 4.7	Volumetric Percentage of the Light and Heavy Fractions of Ethyl Ester Using H ₂ SO ₄ as a Catalyst	58
Figure 4.8	Volumetric Percentage of the Light and Heavy Fractions of Ethyl Ester Using KOH	58
Figure 4.9	ASTM Distillation Curve of Cracked Rapeseed Oil Sample Using CaO as Catalyst	64
Figure 4.10	The Calorific Value of Estrified and Cracked Rapeseed Oil	64

Figure 4.11	The Kinematic Viscosity of Estrified and Cracked Rapeseed Oil (the Kinematic Viscosity of Diesel ≤7 c. Stoke)	65
Figure 4.12	Water Content for Estrified Product and Cracked Product Compared to Diesel (Water Content of Diesel ≤0.15%)	65
Figure 4.13	The Flash Point of Esterified and Cracked Rapeseed Oil (the flash point of diesel >55 °C)	66
rot Figure 4:14 .noisst	Carbon Residue for the Esterified and Cracked Product of Rapeseed Oil (Carbon Residue for Diesel ≤0.1%)	66
Megahed. Fats 61.4 srugid careful	Cetane Number for the Esterified and Cracked Products of Rapeseed Oil (Cetane Number for Diesel ≥ 55)	67
Figure 4.16	Volumetric Percentage of Liquid Fraction (230-350 °C) in Methylated and Cracked Samples	67
Figure 4.17	Volumetric Percentage of Liquid Fraction (230-350 °C) in Ethylated and Cracked Samples	68
Figure 5.1	A Front View of the Tecquipment Diesel Engine	72
Figure 5.2	The LANCOM 6500A Portable Flue Gases Analyzer	72
Figure 5.3	The Concentration of CO in the Exhaust from the Combustion of Esterified and Cracked Products Compared to Diesel	77
Figure 5.4	The Percentage of CO ₂ in the Exhaust from the Combustion of Esterified and Cracked Products Compared to Diesel	77
Figure 5.5	The Concentration of NO in the Exhaust from the Combustion of Esterified and Cracked Samples Compared to Diesel	78
Figure 5.6	The Concentration of NO _x for the Burned Esterified and Cracked Products Compared to Diesel	78