Hematopoietic Stem Cell Transplantation in β-Thalassemia Major: The Egyptian Outcome

Thesis

Submitted for partial fulfillment of master degree in pediatrics

By

Samar Sayed Ramadan Mostafa

M.B.B.CH

Cairo University

Under supervision of

Prof. Dr. Amal Mohamed Ibrahim Elbeshlawy

Professor of pediatrics

Cairo University

Prof. Dr. Alaa Mohamed Elhaddad

Professor of oncology

National Cancer Institute

Cairo University

Dr. Amina Abdelsalam Mahmoud

Assistant professor of pediatrics

Cairo University

Faculty of Medicine
Cairo University
2016

I dedicate my dissertation work

to my mother and father who gave me love,

encouragement and being always there for me.

to my sisters and many friends for their

support and encouragement.

Acknowledgment

First and last thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I owe my deepest gratitude to *Prof. Dr. Amal Mohamed Ibrahim Elbeshlawy*, professor of pediatrics, Cairo University, for suggesting the subject, sincere encouragement and valuable criticism. It is a great honor for me to work under her supervision.

I am deeply grateful to *Prof. Dr. Alaa Mohamed Elhaddad*, professor of oncology, National Cancer Institute, Cairo University for making it possible to carry out this work and for his guidance into the world of SCT.

I would like to thank *Prof. Dr. Khalid Mohamed Salama*, professor of pediatrics, Cairo University for his generous help and precious notes throughout the whole work.

I also owe a great debt of gratitude to *Dr. Amina Abdelsalam Mahmoud*, assistant professor of pediatrics, Cairo University, for her continuous support, creative and comprehensive advice to get this work to existence.

Samar Sayed Ramadan Mostafa

Abstract

Hematopoietic stem cell transplantation (HSCT) offers curative potential for β -thalassemia major. Aim of the work: To evaluate the thalassemia-free survival and outcome of stem cell transplantation in the Egyptian experience and to analyze the patients and donors' characteristics as well as transplantation related factors that could affect the graft success rate. **Methods:** This study retrospectively analyzed 174 patients who underwent stem cell transplantation for β-thalassemia major in Nasser institute, between January 1997 and December 2014. Results: Their age at the time of transplantation ranged from 0.7 to 23.7 years; with a mean of 6.1±4.2 and median 4.6 years. One hundred and six were males (60.9%) and 68 (39.1%) females (M/F ratio: 1.6). Out of the 174 patients; 38 (21.8%) were in class I, 110 (63.2%) were in class II, and 26 (14.9%) were in class III. Twenty-six (14.9%) patients received bone marrow and 148 (85.1%) received peripheral blood stem cells (PBSC) harvest. The donors were selected based on degree of human leukocyte antigen (HLA) matching, and all of them were HLAidentical donors. 153 were matched sibling donors (MSD) and 10 were matched parent donors (MPD). The study showed that the probabilities of 5year overall survival (OS) is 74.9%, disease free survival (DFS) is 61% and transplant related mortality (TRM) is 18.4%. Graft failure occurred in 12.6%, and the use of PBSC showing lower incidence of graft failure (GF) than BM harvest. **Conclusion:** The optimum age for transplantation is from 2-6 years, PBSC harvest and higher stem doses have more favorable outcomes and stem cell source was the main risk factor of graft failure.

Keywords: HSCT, Thalassemia, OS, DFS

List of Contents

Dedication	I
Acknowledgment	II
Abstract	III
List of Tables	V
List of Figures	VII
List of Abbreviations	X
Introduction	1
Aim of the Work	3
Review of the Literature	
Chapter 1: Overview of β-Thalassemia	4
Chapter 2: Hematopoietic Stem Cell Transplantation	22
Chapter 3: HSCT in β-Thalassemia	54
Patients and Methods	62
Results	68
Discussion	94
Summary, Conclusion and Recommendations	103
References	
Arabic Summary	

List of Tables

Table №	Title	Page №
Table 1	Characteristics of iron chelating agents	14
Table 2	Monitoring protocol for children with thalassemia major	21
Table 3	Phenotypic properties of stem cells	23
Table 4	Diseases commonly treated with HSCT	27
Table 5	Types of donor-recipient ABO incompatibilities	33
Table 6	Preparative regimens commonly used in allogenic stem cell transplantation	36
Table 7	Recipient/donor female-male combination	64
Table 8	Conditioning regimens applied among the studied patients	65
Table 9	Neutrophil and platelet engraftment days of the patients	70
Table 10	Outcome and chimerism of the studied patients	70
Table 11	GVHD prophylaxis among the studied patients	72
Table 12	Site of acute grade 2-4 GVHD among the studied patients	72
Table 13	Type of cGVHD among the studied patients	73
Table 14	Site of cGVHD	73
Table 15	Causes of death among the studied patients	75

Table 16	The 5-year OS, DFS and EFS in relation to the	76	
	clinical variables of the patients by log rank	70	
	The 5-year survival in relation to the recipient/donor		
Table 17	sex combination of the patients and donor source by	80	
	log rank		
Table 18	The 5-year survival in relation to the virology screen	82	
1 aut 1 6	of the patients by log rank	02	
Table 10	The 5-year survival in relation to the risk class of the	83	
Table 19	patients by log rank	03	
Table 20	The 5-year survival in the studied subjects according	85	
1 able 20	to conditioning regimen, stem cell source and dose	0.5	
Table 21	The 5-year survival in the studied subjects according	90	
1 aut 21	to aGVHD grade 2-4	70	
Table 22	Graft failure in relation to other variables in the	93	
	studied subjects by Chi square test	73	

List of Figures

Figure №	Title	Page №
	The normal structure of the β -globin gene and the	
Figure 1	locations and types of mutations resulting in β -	5
	thalassemia	
Figure 2	Effects of excess production of free α -globin chains	6
Figure 3	Thalassemia major showing a high degree of	9
riguic 3	poikilocytosis and nucleated RBCs	9
Figure 4	Embryonic and adult stem cells	22
Figure 5	Major histocompatibility complex	28
Figure 6	T-cell reconstitution after allo-HSCT	41
Figure 7	Sex distribution of the studied cases	68
Figure 8	Age groups of the studied patients	69
Figure 9	The rate of graft failure among the studied patients	71
Figure 10	Mortality rate among the studied patients	74
Figure 11	Distribution of the studied cases according to the	74
	causes of death	, .
Figure 12	OS, DFS and EFS curve by Kaplan-Meier method	75
	in the studied subjects	
Figure 13	OS curve by Kaplan-Meier log rank method in the	77
	studied subjects according to age	

Figure 14	DFS curve by Kaplan-Meier log rank method in the	77
	studied subjects according to age	, ,
Figure 15	EFS curve by Kaplan-Meier log rank method in the	78
	studied subjects according to age	70
Figure 16	OS curve by Kaplan-Meier log rank method in the	78
Figure 16	studied subjects according to iron overload	70
Eigung 17	DFS curve by Kaplan-Meier log rank method in the	70
Figure 17	studied subjects according to iron overload	79
Eigura 10	EFS curve by Kaplan-Meier log rank method in the	79
Figure 18	studied subjects according to iron overload	19
Eigura 10	OS curve by Kaplan–Meier log rank method in the	81
Figure 19	studied subjects according to donor source	
Eigung 20	DFS curve by Kaplan–Meier log rank method in the	81
Figure 20	studied subjects according to donor source	
Figure 21	EFS curve by Kaplan–Meier log rank method in the	82
rigure 21	studied subjects according to donor source	02
Figure 22	OS curve by Kaplan-Meier log rank method in the	92
rigule 22	studied subjects according to risk class	83
Eiguro 22	DFS curve by Kaplan-Meier log rank method in the	Q./I
Figure 23	studied subjects according to risk class	84
Figure 24	EFS curve by Kaplan-Meier log rank method in the	84
Figure 24	studied subjects according to risk class	
Figure 25	OS curve by Kaplan-Meier log rank method in the	86
	studied subjects according to conditioning regimen	80
Figure 26	DFS curve by Kaplan-Meier log rank method in the	86
Figure 26	studied subjects according to conditioning regimen	ου

Figure 27	EFS curve by Kaplan-Meier log rank method in the studied subjects according to conditioning regimen	87
Figure 28	OS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell source	87
Figure 29	DFS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell source	88
Figure 30	EFS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell source	88
Figure 31	OS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell dose	89
Figure 32	DFS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell dose	89
Figure 33	EFS curve by Kaplan-Meier log rank method in the studied subjects according to stem cell dose	90
Figure 34	OS curve by Kaplan-Meier log rank method in the studied subjects according to grade 2-4 aGVHD	91
Figure 35	DFS curve by Kaplan-Meier log rank method in the studied subjects according to grade 2-4 aGVHD	91
Figure 36	EFS curve by Kaplan-Meier log rank method in the studied subjects according to grade 2-4 aGVHD.	92

List of Abbreviations

Abbreviation	Meaning
Ags	Antigens
aGVHD	Acute graft-versus-host disease
AIHA	Autoimmune hemolytic anemia
ALG	Antilymphocyte globulin
allo-HSCs	Allogeneic hematopoietic stem cells
allo-HSCT	Allogeneic hematopoietic stem cell transplantation
ALT	Alanine aminotransferase
ANC	Absolute neutrophil count
ARDS	Adult respiratory distress syndrome
ATG	Anti-thymocyte globulin
auto-HSCs	Autologous hematopoietic stem cells
auto-HSCT	Autologous hematopoietic stem cell transplantation
BM	Bone marrow
BMT	Bone marrow transplantation
Bu	Busulfan
CBC	Complete blood count
cGVHD	Chronic graft-versus-host disease
CMV	Cytomegalovirus
CsA	Cyclosporine A
CTLA	Cytotoxic T lymphocyte antigen
CVD	Cardiovascular disease
CVRFs	Cardiovascular risk factors
CVS	Chorionic villus sampling
Су	Cyclophosphamide
DAH	Diffuse alveolar hemorrhage
DAT	Direct antiglobulin test
DES	Dry eye syndrome
DFS	Disease free survival
DLI	Donor lymphocyte infusion
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic acid
EBMT	European Group for Blood and Marrow Transplantation

EBV	Epstein-Barr virus
ECG	Electrocardiogram
ECP	Extracorporeal photopheresis
EFS	Event free survival
FISH	Fluorescent in-situ hybridization
fL	Femtoliter
Flu	Fludarabine
FN	Febrile neutropenia
FT ₄	Free thyroxine
G-CSF	Granulocyte colony-stimulating factor
GF	Graft failure
G-PBMCs	Granulocyte colony-stimulating factor mobilized peripheral blood mononuclear cells
GVHD	Graft-versus-host disease
GVL	Graft-versus-leukemia
Gy	Gray
hATG	Horse anti-thymocyte globulin
Hb	Hemoglobin
HBcAb	Hepatitis B core antibody
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HCV-Ab	Hepatitis C virus antibody
HHV	Human herpes virus
HIV	Human Immunodeficiency virus
HLA	Human leukocyte antigen
HLH	Hemophagocytic lymphohistiocytosis
HRD	Haplo-related donors
HRQL	Health-related quality of life
HSCs	Hematopoietic stem cells
HSCT	Hematopoietic stem cell transplantation
IgG	Immunoglobulin G
IL	Interleukin
IMH	Mediterranean Institute of Hematology
IPn	Interstitial pneumonia
IPS	Idiopathic pneumonia syndrome
IV	Intravenous

LDH	Lactate dehydrogenase
LIC	Liver iron concentration
M/F	Male to female
MAC	Myeloablative conditioning
MC	Mixed chimerism
MCH	Mean corpuscular hemoglobin
MCV	Mean corpuscular volume
Mel	Melphalan
MHC	Major histocompatibility complex
MMF	Mycophenolate mofetil
MPD	Matched parent donors
MR	Magnetic resonance
MRI	Magnetic resonance imaging
MSCs	Mesenchymal stem cells
MSD	Matched sibling donors
MTX	Methotrexate
MUD	Matched unrelated donors
NMDP	National Marrow Donor Program
OS	Overall survival
PB	Peripheral blood
PBSC	Peripheral blood stem cells
PCR	Polymerase chain reaction
PCR-SSO	Polymerase chain reaction sequence specific oligonucleotides
PCs	Pulmonary complications
PERDS	Peri-engraftment respiratory distress syndrome
pg	Picogram
PO	Per os
PRES	Posterior reversible encephalopathy syndrome
PTCy	Post-transplantation Cyclophosphamide
PUVA	Psoralen combined with ultraviolet A
QALE	Quality-adjusted life expectancy
QoL	Quality of life
rATG	Rabbit anti-thymocyte globulin
RBCs	Red blood corpuscles
RDs	Related donors
RFs	Risk factors
· · · · · · · · · · · · · · · · · · ·	

List of Abbreviations

rhG-CSF	Recombinant human granulocyte colony-stimulating factor
RIC	Reduced-intensity conditioning
RNA	Ribonucleic acid
RPLS	Reversible posterior leukoencephalopathy syndrome
RTC	Reduced-toxicity conditioning
SCs	Stem cells
SCT	Stem cell transplantation
SMR	Sexual maturity rating
SQUID	Superconducting quantum interference device
STR	Short tandem repeats
T ₃	Triiodothyronine
T ₄	Thyroxine
TBI	Total body irradiation
TCD	T-cell depletion
TNF	Tumor necrosis factor
tPA	Tissue plasminogen activator
TPN	Total parenteral nutrition
TRH	Thyrotropin-releasing hormone
TRM	Transplant related mortality
TSH	Thyroid stimulating hormone
UCB	Umbilical cord blood
UCBT	Umbilical cord blood transfusion
URD-HSCT	Unrelated donor hematopoietic stem cell transplantation
VNTR	Variable number tandem repeats
VOD	Veno-occlusive disease
WHO	World Health Organization

Introduction

Since the first successful transplant performed in a child with thalassemia major by Thomas and colleagues in Seattle (*Thomas et al, 1982*), many patients with thalassemia major have been cured by HSCT, in most cases performed using an HLA-identical sibling donor with bone marrow (BM) as the stem cell source (*Locatelli and Stefano, 2004*).

In recent years, the number of transplants has increased further, involving a growing number of medical centers including those of the Far and Middle East, where thalassemia is endemic and represents a serious health and socioeconomic problem (*Li et al, 2012*).

Several new approaches have been applied to reduce the toxicity of conditioning regimens, improve strategies for the prevention of graft-versus-host disease (GVHD), and optimize supportive care. The 5-year probabilities of overall survival and thalassemia-free survival are currently estimated as 87% to 97% and 80% to 89%, respectively (*Angelucci and Baronciani*, 2008).

In 1989, the stem cell transplantation (SCT) program started in Egypt on a narrow scale. In 1997, the transplant rate increased dramatically with the opening of the SCT unit at Nasser Institute. The total number of transplants performed till June 2007 was 1362; 80% of the cases were allogeneic and 20% autologous (*Mahmoud et al*, 2008).