Endoscopic third ventriculostomy versus Ventriculoperitoneal shunt in patients with idiopathic normal pressure hydrocephalus.

A systematic review

A dissertation submitted for partial fulfillment of the conditions for the Master Degree in Neurosurgery.

By

Mazen Mohamed Sabet Elkarras

M.B.B.Ch; Faculty of medicine, Ain Shams University

Supervised by

Prof.Dr.Khaled Mohamed El-Bahy

Professor of Neurosurgery, Faculty of medicine, Ain Shams University.

Asst.Prof.Dr.Ahmed Faisal Toubar

Assistant Professor of Neurosurgery, Faculty of medicine, Ain Shams University.

Asst.Prof.Dr.Mohamed Elsayed Ali Nosseir

Assistant Professor of Neurosurgery, Faculty of medicine, Ain Shams University.

Faculty of Medicine AIN SHAMS UNIVERSITY 2016

Acknowledgements

In the beginning, I am very grateful to GOD ALMIGHTY for without His graces and blessings this review would not have been possible.

Immeasurable appreciation and deepest gratitude are extended to my advisor *Prof.Dr. Khaled El-Bahy* for his continuous support, his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this review. I couldn't have imagined having a better advisor and mentor for me.

Beside my advisor, I would like to thank *Asst.Prof.Dr. Ahmed Faisal Toubar* for his insightful comments and encouragement, without his passionate participation and input, this review couldn't have been successfully conducted.

My sincere gratitude for *Asst.Prof.Dr. Mohamed Nosseir* for his unconditional support, absolute patience, continuous education and guidance which helped me in writing this review.

صَّالُ فِي اللهُ العِظَمِينَ،

(سورة طه - الآية ١١٤)

Table of Contents

Acknowledgements				
List of FiguresV				
List of TablesVIII				
List of abbreviationsIX				
INTRODUCTION				
I. Rationale and justification of the study				
II. Aim				
III. Objectives				
REVIEW OF LITERATURE				
History of normal pressure hydrocephalus				
History of endoscopic third ventriculostomy				
Neuroanatomy of the ventricular system				
I. Lateral ventricle				
II. Third ventricle				
III. Foramen of Monro				
IV. Cerebral aqueduct				
V. Fourth ventricle				
Anatomy and physiology of CSF14				
I. CSF secretion				
II. CSF circulation				
III. CSF absorption				
IV. CSF pressure				
Epidemiology				
Pathophysiology				
Clinical diagnosis				
A. Main symptoms				
B. Other Symptoms of NPH and Symptoms				
Diagnostic criteria				

A.	Probable INPH			
B.	Possible INPH 29			
C.	Unlikely INPH			
Investigations				
A.				
B.	Supplementary tests			
NPH grading scales				
Diffe	rential diagnosis			
Treat	ment43			
A.	Ventriculo-Peritoneal shunt			
B.	Endoscopic third ventriculostomy			
SYST	TEMATIC REVIEW50			
Metho	odology50			
Resul	ts55			
Stu	dies description			
Pop	oulation Description57			
Pre	valence of symptoms60			
Inte	ervention			
The assessment of post-procedure outcome				
Follow up duration				
Primary outcome				
Sec	ondary outcome			
Discussion				
Primary outcome				
Secondary outcome				
Conclusion				
REFE	REFERENCE			
ENGLISH SUMMARY112				
Arabic Summary				

List of Figures

Figure 1: A pneumoencephalogram of Hakim's first normal-pressure
hydrocephalus patient
Figure 2: Lateral ventricle shape, parts and relation to surrounding structure 5
Figure 3: Boundaries and relationships of the frontal horn of the lateral
ventricle6
Figure 4: Boundaries of the lateral ventricle
Figure 5: boundaries of the third ventricle
Figure 6: Anatomy of Formaen of Monro
Figure 7: Roof of the fourth ventricle
Figure 8: Floor of the fourth ventricle
Figure 9: Fourth ventricular floor structures
Figure 10: Distribution of CSF in the central nervous system
Figure 11: CSF circulation
Figure 12: CSF absorption in relation to the arachnoid granulations and dural
sinuses & Virchow-Robin perivascular spaces
Figure 13: Schematic drawing illustrates various models of the
pathophysiology of INPH
Figure 14: Cerebral angiogram scheme of right carotid artery showing the
phases of perfusion and vectors of blood pressure (red arrow), ISF shockwave
(green arrow), and CSF pulse wave (blue arrow) during a heart cycle. Light
blue area, ventricular system. (A) Early arterial phase. (B) Perfusion of the
grey matter and initiation of ISF shockwave. (C) Retrograde pressure vector
by brain expansion caused by increasing blood volume (red arrow), ISF
shockwave maximum (green arrow), and triggering CSF pulsewave (blue
arrow). (D) Reflexion of arterial pressure pulse wave from the cranial vault
(red arrow), CSF pulsewave arriving at the subrachnoid space (blue arrow),
ISF shockwave (green arrow) and reflexioninduced CSF pulse (reflexion
wave; small blue arrow) by outflow resistance leveling out. (E) Venous phase
of blood flow decreasing intracerebral blood volume (red) and CSF/water
transmission across the cortical ependyma (blue arrow)

Figure 15: Timeline-based pulsatile vector model of CSF/ISF dynamics under
normal conditions (A) & vector forces and ISF/CSF disturbances in INPH (B)
Figure 16: Measurement of Evans index calculated as the maximal width of
the frontal horns (A)/maximal biparietal diameter (B)
Figure 17: Typical INPH findings on MRI
Figure 18: Callosal angle
Figure 19: CSF tap test and External lumbar drain
Figure 20: Slice positioning perpendicular to the midaqueduct for a phase-
contrast CSF flow study
Figure 21: Phase-contrast images showing aqueductal flow up during diastole
(black) and down during systole (white)
Figure 22: Volumetric CSF flow through the aqueduct during 1 cardiac cycle.
Positive deflections represent caudocranial flow (CSF diastole) and negative
deflection represents craniocaudal flow (CSF systole)
Figure 23: CT cisternography showing radiotracer at different time intervals
(A) inside the lateral ventricle, (B) over the cerebral convexities
Figure 24: High pressure valve
Figure 25: (A) Radiographic appearance of the Codman Hakim Programmable
Valve (set to 90 mm H2O). (B) Setting code for the Codman Hakim
Programmable Valve
Figure 26: Development & noninvasive treatment of bilateral subdural
hygromas following placement of a programmable shunt for idiopathic normal
pressure hydrocephalus. (A) Postoperative head CT shows no evidence of
subdural fluid collections. (B) Head CT demonstrating bilateral subdural
hygromas (arrows). The patient noted worsening gait and balance similar to
her preoperative symptoms. To treat the hygromas, the pressure setting of the
shunt was increased. (C) Head CT scan 4 weeks later demonstrating resolution
of the subdural fluid collections. The patient's symptoms concomitantly
improved44
Figure 27: Site of the burr hole
Figure 28: The endoscope trajectory

Figure 29: Endoscope instruments	48
Figure 30: Endoscopic view of the third ventricular floor	49
Figure 31: A schematic showing the article selection process from Me	edline
database search and manual review of bibliographies	54
Figure 32: Prevalence of male and female among study population	58
Figure 33: Male to female ratio among study population	
Figure 34: Mean age in all studies except in M.A. Eshra et al. which wa	as not
reported	59
Figure 35: Prevalence of symptoms among study population	61
Figure 36: Overall prevalence of symptoms among study population	
Figure 37: Mean follow up duration	66
Figure 38: Outcome of patients who underwent VP shunt	
Figure 39: Total outcome of patients who underwent VP shunt	
Figure 40: Outcome of patients who underwent ETV	70
Figure 41: Total outcome of patients who underwent ETV	71
Figure 42: Comparison between the total outcome of patients who unde	rwent
VP shunt and ETV	71
Figure 43: Gait disturbance pre and post shunting	73
Figure 44: Gait disturbance pre and post ETV	74
Figure 45: Cognitive function pre and post shunting	76
Figure 46: Cognitive function pre and post ETV	77
Figure 47: Urinary disturbance pre and post shunting	79
Figure 48: Urinary disturbance pre and post ETV	80
Figure 49: Complication type and rate among VP shunt group	84
Figure 50: Complication type and rate among ETV group	
Figure 51: Overall improvement rate outcome post VP shunt and ETV	92
Figure 52: Gait disturbance outcome post VP shunt and ETV	94
Figure 53: Cognitive function outcome post VP shunt and ETV	96
Figure 54: Urinary disturbance outcome post VP shunt and ETV	98
Figure 55: Comparison of improvement rate between VP shunt and ETV.	99
Figure 56: Complication rate in VP shunt and ETV	100

List of Tables

Table 1: Studies description.	. 56
Table 2: Population description	. 57
Table 3: Prevalence of symptoms.	60
Table 4: Method of CSF diversion.	63
Table 5: Outcome of patients who underwent VP shunt	67
Table 6: Outcome of patients who underwent ETV.	. 69
Table 7: Gait disturbance pre and post shunting	. 72
Table 8: Gait disturbance pre and post ETV	. 73
Table 9: Cognitive function pre and post shunting.	. 75
Table 10: Cognitive function pre and post ETV.	. 76
Table 11: Urinary disturbance pre and post shunting.	. 78
Table 12: Urinary disturbance pre and post ETV.	
Table 13: Complication type and rate among VP shunt group	. 83
Table 14: Complication type and rate among ETV group	. 85
Table 15: Comparison of different outcome rate between VP shunt and ETV	⁷ .
	. 99

List of abbreviations

Abbreviation	Full meaning
AC-PC	Anterior Commissure- Posterior Commissure Plane
Plane	
CBF	Cerebral Blood Flow
CNS	Central Nervous System
CSF	Cerebrospinal fluid
CSF-OP	Cerebrospinal fluid opening pressure
CT	Computed tomography
DESH	Disproportionate Enlarged Subarachnoid space Hydrocephalus
DM	Diabetes mellitus
ELD	External Lumbar Drain
EMG	Electromyography
ETV	Endoscopic third ventriculostomy
HTN	Hypertension
ICP	Intracranial pressure
INPH	Idiopathic Normal Pressure Hydrocephalus
ISF	Interstitial fluid
KS	Kiefer Scale
LP	Lumbar puncture
MMSE	Mini Mental status Examination
MRI	Magnetic resonance imaging
NPH	Normal Pressure Hydrocephalus
NPHRR	NPH Recovery Rate
RCT's	Randomized controlled trials
SRINPH	Shunt Responsive Idiopathic Normal Pressure Hydrocephalus
VP shunt	Ventriculoperitoneal shunt

INTRODUCTION

I. Rationale and justification of the study

Idiopathic normal pressure hydrocephalus (INPH) is an adult onset syndrome of uncertain origin involving non-obstructive enlargement of the cerebral ventricles. In the absence of papilledema and with normal cerebrospinal fluid (CSF) opening pressure on lumbar puncture.⁽¹⁾

Hakim and Adams first described the syndrome of NPH in 1965 as a syndrome characterized by a clinical triad of progressive gait disturbance, dementia and urinary incontinence. These symptoms vary in severity and appearance. Gait impairment is the most common clinical feature in INPH, with a frequency ranging from 80% to 100% and it is often the patient's initial complaint. The second most frequent symptom is cognitive impairment, which ranges from 42% to 100%. Urinary incontinence ranges from 34% to 82%, where full clinical triad is present in 38-82% of cases.⁽²⁾

The pathophysiology of INPH remains unknown, and the assessment of these patients is still debated, however suggested mechanisms include reduction of blood flow leading to reduced periventricular metabolism and axonal degeneration without significant cortical damage and stretching of the periventricular white matter.^(3, 4)

Diagnosis of INPH can be achieved through detailed history, physical examination, and neuroimaging which is considered as an obligatory part in the evaluation of suspected INPH to document ventricular enlargement, to rule out macroscopic obstruction to CSF flow and other pathology. Magnetic resonance imaging (MRI) is considered the method of choice due to the vastness of information it provides, but computed tomography (CT) is an acceptable alternative. Prognostic tests like the CSF tap test, the lumbar infusion test and intracranial pressure (ICP) monitoring have made it easier to identify the patients who will most likely benefit from surgery. (1,5)

No rule for conservative treatment in management of INPH. Surgical treatment is mandatory because it has been associated with a positive impact on the course of the disease, in terms of the quality of life of patients and caregivers.⁽⁶⁾

The treatment for INPH is surgical diversion of CSF where ventriculoperitoneal shunt (VP shunt) is the most commonly used method but more recent studies have suggested a positive effect of endoscopic third ventriculostomy (ETV).^(5, 6)

The purpose of this review was to provide an overview of the current literature investigating the treatment and outcome in INPH patients.

II. Aim

To review and summarize available knowledge on the rule of endoscopic third ventriculostomy versus ventriculoperitoneal shunt in the management of patients with idiopathic normal pressure hydrocephalus.

III. Objectives

To compare the efficacy and effectiveness of VP shunt and ETV in management of INPH as regards improvement of clinical picture as a primary outcome and preservation of quality of life in terms of morbidity and mortality rates as a secondary outcome.

REVIEW OF LITERATURE

History of normal pressure hydrocephalus

Normal pressure hydrocephalus was first described by Salomón Hakim in his degree thesis-*Some Observations on C.S.F. Pressure: Hydrocephalic Syndrome in Adults with "Normal" C.S.F. Pressure* (Thesis No. 957, Javeriana University School of Medicine, Bogotá, Colombia, March 10, 1964).⁽⁷⁾

The first case was described in 1957 for a 16 years old boy with severe head injury after a motor car accident operated on for a subdural hematoma, and surgery was considered to be successful. However the patient remained in an impaired level of consciousness. As a diagnostic procedure, pneumoencephalography was performed and revealed ventricular dilatation. The pressure readings taken at that time displayed rather normal intracranial pressure.⁽⁸⁾

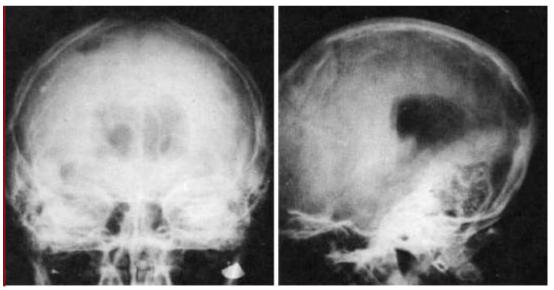


Figure 1: A pneumoencephalogram of Hakim's first normal-pressure hydrocephalus patient. (8)

Hakim removed 15 mL CSF for further laboratory investigation. After the CSF removal, the patient's level of consciousness improved the next day. His alertness subsequently declined over the following days and then improved

again after a second lumbar puncture. Hakim decided to implant a ventricular atrial shunt. The patient improved significantly and the treatment was long lasting. The case was presented in Hakim's doctoral thesis in 1964.⁽⁸⁾

After Hakim's publication in 1965, the spinal tap test became the standard diagnostic test. Further tools to predict shunt responsiveness include lumbar spinal drainage, and intracranial pressure monitoring.⁽⁹⁾

In 1965, the syndrome was introduced by Adam et al. and Hakim et al. in an article published in *New England Journal of Medicine* were three case reports were described, one idiopathic and two post-traumatic. The syndrome was described as a triad of gait disturbance, dementia, and urinary incontinence associated with patients in whom ventricular enlargement occurred in the absence of elevated intracranial pressure.⁽¹⁰⁾

History of endoscopic third ventriculostomy

This first ETV was performed in 1923 by William J. Mixter in a 9 month old hydrocephalic patient. Utilizing a urethroscope, he was able to pass through the foramen of Monro, visualize the third ventricle and cerebral aqueduct, and make a hole in the floor of the third ventricle connecting it to the interpeduncular cistern. The next ETV did not appear in the literature until 1935, when Scharff reported his initial results using an endoscope. Scharff described several modifications including an irrigation system that kept the ventricles open, a mobile cautery tip, and a moveable operating tip that could perforate the floor of the third ventricle. However, the long term results were not rewarding yet and the morbidity and mortality rate not accepted, were poorly designed instruments and optical apparatus were the main causes of the disappointing outcomes. (11, 12)

The procedure disappeared till the development and improvement of fibro optic cables that occurred between 1950s to 1970s. In 1978, Vries et al. used fiber optic endoscope inserted through a small burr hole over the coronal suture. The technique has been successfully employed in five patients without complications. In 1990, Jones et al. reported successful outcome with ETV with low morbidity and no mortality. His work became a milestone for the indications and the evaluation of the results after ETV. (11, 12)

Neuroanatomy of the ventricular system

I. Lateral ventricle

Each lateral ventricle is a C-shaped cavity that winds around the thalamus and is situated deep within the cerebrum.

Each lateral ventricle has five parts:

- •Frontal horn.
- •Body.

•Atrium.

- •Temporal horn.
- •Occipital horn.

Each of these five parts has a roof, and a floor, medial and lateral walls. In addition, the frontal and temporal horns and the atrium have anterior walls. (13)

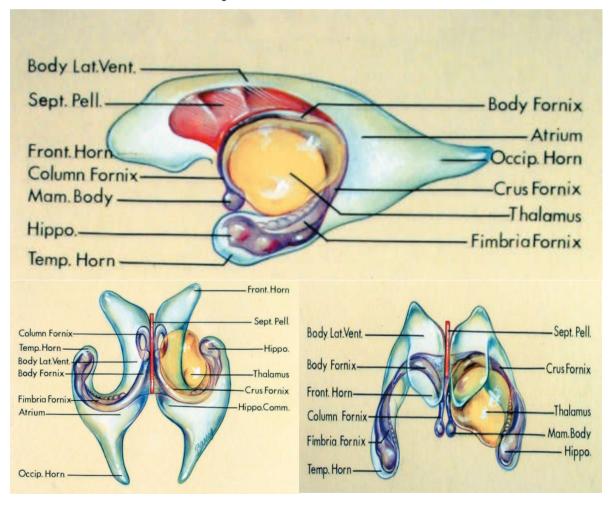


Figure 2: Lateral ventricle shape, parts and relation to surrounding structure. (13)