Therapeutic Role of Herbs in Human Parasitic Diseases

Essay
Submitted for partial fulfillment of Master Degree of Parasitology

By

Rania Mohamed Eldemerdash Sarhan

Demonstrator of Parasitology

Faculty of Medicine-Ain Shams University

Under the supervision of

Prof. Dr. Mohamed Ahmed Abdel Rahman Sarwat

Professor of Parasitology
Faculty of Medicine-Ain Shams University

Prof. Dr. Nashwa Ibrahim Ibrahim Ramadan

Professor of Parasitology
Faculty of Medicine-Ain Shams University

Dr. Hala Kamal Hassan El Deeb

Lecturer of Parasitology
Faculty of Medicine-Ain Shams University

Parasitology Department
Faculty of Medicine
Ain Shams University
2006

الدور العلاجى للأعشاب الطبية فى الأمراض الطفيلية

ر سالة

مقدمة توطئة للحصول علي درجة الماجستير في علم الطفيليات

من الطبيبة رانيا محمد الدمرداش سرحان

معيدة بقسم علم الطفيليات كلية الطب-جامعة عين شمس

تحت اشراف الأستاذ الدكتور/ محمد أحمد عبد الرحمن ثروت

أستاذ علم الطفيليات كلية الطب-جامعة عين شمس

الأستاذة الدكتورة / نشوة إبراهيم إبراهيم رمضان

أستاذ علم الطفيليات كلية الطب-جامعة عين شمس

الدكتورة/ هالة كمال حسن الديب

مدرس علم الطفيليات كلية الطب-جامعة عين شمس قسم علم الطفيليات كلية الطب كلية الطب جامعة عين شمس 2006

List of contents

Intoduction and aim of literature	1
Review of literature	7
I. Helminthic infections	7
A. Trematode infections	7
Fascioliasis	7
Clonorchiasis	19
Heterophiasis	23
Schistosomiasis	28
Herbal molluscicides	55
B. Cestode infections	65
Taeniasis	65
Diphyllobothriasis	72
Hymenolepiasis	74
Dipelediasis	80
C. Nematode infections	84
Ascariasis	84
Visceral and Ocular Larva Migrans	94
Enterobiasis	97
Hookworm infection	103
Trichostrongyliasis	108
Strongyloidiasis	110
Trichuriasis	116
Filariasis	120
Onchocerciasis	125
Dracunculiasis	131

II. Protozoal infections	136
Entamoebiasis	136
Giardiasis	144
Trichomoniasis	158
Leishmaniasis	167
African Trypasosomiasis	179
Chagas' disease	186
Malaria	194
Toxoplasmosis	213
Babesiosis	217
Cryptosporidiosis	221
Blastocyctosis	223
III. Arthropodal infections	226
Mosquitoes	226
Flies	239
Fleas	248
Ticks	249
Lice	253
Mites	257
Scorpions	266
Other herbal insecticides	268
Summary and recommendations	270
References	277
Arabic summary	

List of abbreviations

%: Percentμg: Microgramμl: Microliter

μm: μm:Micrometer

ACE: Angiotensin converting enzyme
ADI: Average degree of infection
AIDS: Acquired immunodeficiency

syndrome

ALT: Alanine transpeptidase

AME: Aqueous methanolic extracts
AST: Aspartate transpeptidase
ATP: Adenosine triphosphate

C°: Degree(s) Celsius

CL: Cutaneous leishmaniasis
CNS: Central nervous system

D: Day

DAS: Diallyl sulphide

DE: Diammonium salt of embelin

DEC: Diethyl carbamazine **Deet:** Diethyl toluamide

DEPA: Diethylphenyl acetamide

DMP: Dimethyl phthalate

DNA: Deoxy ribo nucleic acid **DNase:** Deoxy ribo nuclease

DOC: Drug Of Choice

DP: Dorycnium pentaphylum

DR: Dorycnium rectum

ELISA: Enzyme linked immunosorbent

assay

FDA: Food and drug administration

Fig.: Figure **G:** Gram(s)

GI: Gastrointestinal

GIT: Gastro intestinal tract

GMEC: Geometric mean egg count GOT: Glutamate oxaloacetate

transaminase

GPase: Glycogen phosphorylase

GPT: Glutamate pyruvate

transaminase

GRAS: Generally recognized as safe

GSase: Glycogen synthase GSE: Grapefruit juice extract

HH: Houttuyniae Herba

HK: Hexokinase

HPV: Human papilloma virus

Hr: Hour

IHAT: Indirect heamagglutination test

IL: Interleukins IM: Intra muscular

IT: Time of inactivation

IV: Intra venous

KP: Kalanchoe pinnata **KSK:** Karanja seed kernels

L: Larvae

LAWS: low aromatic white spirits

LC: Lethal concentration

LD: Lethal dose

LDH: Lactate dehydrogenase
LP: Lotus pedunculatus
MAC: Macfadyena unguis cati
MDH: Malate dehydrogenase

ME: Malic enzyme Mf: Microfilaria

MIC: Minimal inhibitory

concentration

Min: MinutesMl: MilliliterMm: Millimeter

MT: Mineral turpentine

MWF: Methanol water fraction NAG: N-acetyl glucosamine NDGA: Nacetyl-D-glucosamine

Nm: Nanometer NO: Nitric oxide

OCP: Onchocerciasis Control

Programme

Oz: Ounce

PABA: Paraamino benzoic acid

PBMCs: Peripheral blood mononuclear

cells

PEPCK: Phosphoenol pyruvate

carboxykinase

PFK: Phosphofructokinase

PI: Post infection Pyruvate kinase

PMN: Polymorphonuclear leucocytes

PO: Per os

POA: Pentacyclic Oxindole Alkaloids

PPM: Part per million
PR: Pippali rasayana
RNA: Ribo nucleic acid
RNase: Ribo nuclease

Spp.: Species

TAS: Total antioxidant status
TBARS: Thiobarbituric acid reactive

substances

TTO: Tea tree oil

WGA: Wheat germ agglutininWHO: World Health Organization

Wk: Week

List of figures

	Title	Page
Figure(1):	Myrrh	13
Figure(2):	Areca nuts	25
Figure(3):	Pumpkin seeds	26
Figure(4):	Treatment of	27
3 ()	experimental	
	heterophyiasis with	
	Areca nuts and	
	pumpkin seeds	
Figure(5):	Artemisia annua	33
Figure(6):	Light microscopic	46
S \ /	study showing the	
	effect of myrrh on the	
	liver of mice	
Figure(7):	Ferula assafoetida	47
Figure(8a):	Effect of Ferula	49
	<i>assafoetida</i> on	
	experimental murine	
	Schistosoma mansoni	
	infection	
	(histopathology)	
Figure(8b):	Effect of Ferula	50
	<i>assafoetida</i> on	
	experimental murine	
	Schistosoma mansoni	
	infection	
	(ultrastructure)	

EIST OF TABLES		
Figure(9):	Nigella sativa	51
Figure (10):	Zanthoxylum spp.	70
Figure (11):	Wild asparagus	71
Figure(12):	Acacia auriculiformis	79
Figure (13):	Papaya seeds	86
Figure (14):	Chenopodium	88
	ambrosioides	
Figure (15):	Fructus mume	90
Figure (16):	Embelia ribes.	91
Figure (17):	Quassia.	94
Figure (18):	Tansy.	100
Figure(19):	Wormwood.	101
Figure(20):	Black walnut.	102
Figure(21):	Thymus vulgaris.	106
Figure(22):	Gervao.	114
Figure(23):	Elecampane.	119
Figure(24):	Echinacea purpurea.	123
Figure(25):	Ginkgo biloba.	128
Figure(26):	Erva tostao.	133
Figure(27):	Uncaria tomentosa.	140
Figure (28):	Wheat germ.	148
Figure(29):	Berberis vulgaris.	154
Figure (30):	Oregano.	157
Figure (31):	The effect of berberine	164
	on T. vaginalis in vitro.	
Figure (31(1)):	T. vaginalis stained	164
	with methylene blue.	
Figure (31(2)):	T. vaginalis stained	164
	with toluidine blue.	
Figure(32)	Melaleuca alternifolia.	165
Figure (33):	Chinese licorice plant.	172

Figure (34):	Scoparia dulcis.	185
Figure (35):	Kigelia pinnata.	190
Figure (36):	Ailanthus altissima.	206
Figure (37):	Kniphofia foliosa.	212
Figure (38):	Usnea longissimaseu.	215
Figure (39):	Pine bark.	222
Figure (40):	Neem tree.	228
Figure(41):	Fennel.	233
Figure (42):	Pelargonium citrosum.	235
Figure (43):	Lantana camara	242
Figure (44):	Eucalyptus globulus	243
Figure (45):	Chamaecyparis	251
	nootkatensis.	
Figure (46):	Lippia multiflora.	254
Figure (47):	Ageratum conyzoides.	260
Figure (48):	Cnidium monnieri	265

	Title	Page
Table(1):	Clinical symptoms and signs of 7 patients with fascioliasis.	15
Table(2):	Effect of treatment with myrrh on liver and renal functions in patients infected with schistosmiasis.	41
Table(3):	Side effects of myrrh in studied patients.	43
Table(4):	Effect of treatment with myrrh on electrocardiographic parameters among studied patients (n=10).	44
Table(5):	Antihelminthic activity of medicinal plants treating <i>H</i> . nana.	77
Table(6):	Plants reported as being used to treat cutaneous leishmaniasis, in Ecuador, 1993-1995.	175-176
Table (7):	Medical treatment of trypanosomiasis.	181
Table(8):	Artemisinin concentration in tea preparations of <i>Artemisia</i>	199
Table(9):	annua. Indigenous medicines used in treatment of malaria in Kenya.	204

Introduction

Parasitic diseases remain a major public health problem affecting hundreds of millions of people, particularly in tropical developing countries. The limited availability and affordability of pharmaceutical medicines mean that the majority of the world's population depends on traditional medical remedies, and it is estimated that some 20.000 species (spp.) of higher plants are used medicinally throughout the world (*Tagboto and Townson*, 2001). The traditional medicines hold a great promise as source of easily available effective antihelminthic agents to the people. Several plants or plant-derived preparations are consumed to cure helminthic infections (*Akerele*, 1990). The origin of many effective drugs is found in traditional medicine practices for their proclaimed antihelminthic efficacy (*Tangpu and Yadav*, 2004).

Led by instinct, taste, and experience, primitive men and women treated illness by using plants that were not part of their usual diet. Physical evidence of use of herbal remedies goes back some 60.000 years (*Solecki*, 1975). In a cave in northern Iraq, scientists found ordinary human bones surrounded by extraordinary quantities of plant pollen that could not have been introduced accidentally at the burial site. Someone in the small cave community had consciously gathered eight species of plants to surround the dead man. Seven of these are medicinal plants still used throughout the herbal world (*Bensky and Gamble*, 1993). All cultures have long folk medicine histories that include the use of plants. Even in ancient cultures, people methodically and scientifically collected information on herbs and developed well

defined herbal pharmacopoeias. Eighty percent (%) of the world population use herbal medicine for some aspect of primary health care. Herbal medicine is a major component in all indigenous traditional medicine and is a common element in Ayurvedic, homeopathic, naturopathic, traditional oriental, and Native American Indian medicine (*Farnsworth et al.*, 1985).

Many well known drugs listed in the modern pharmacopoeia have their origins from nature, including, for example, quinine from the bark of the *Cinchona* tree for the treatment of malaria, which has been followed by the subsequent development of the synthetic derivatives chloroquine, amodiaquine, primaquine and mefloquine. More recently, the wider recognition of the antimalarial activity of artemisinin from the herb *Artemisia annua* has led current research to focus on the development of a large number of synthetic and semi synthetic compounds, which are more active than artemisinin. There is an increasing awareness of the potential of natural products, which may lead to the development of much needed new antiparasitic drugs (*Tagboto and Townson*, 2001).

The sophistication of herbal remedies used around the world varies with the technological advancement of countries that produce and use them. These remedies range from medicinal teas and crude tablets used in traditional medicine to concentrated, standardized extracts produced in modern pharmaceutical facilities and used in modern medical systems under a physician's supervision. A guiding principle should be that if the product has been traditionally used without demonstrated harm, no specific restrictive regulatory action should be undertaken unless new evidence demands a revised risk-benefit assessment. Prolonged and apparently uneventful use of a

substance usually offers testimony of its safety. For treatment of minor disorders and for nonspecific indications, some relaxation is justified in the requirements for proof of efficacy, taking into account the extent of traditional use; the same considerations may apply to prophylactic use (WHO, 1991).

The WHO guidelines cover two kinds of combination products: Old combination products that are already used in traditional medicine and new combination products which are well known substances that are now being used (*Schuster*, 2001).

Herbs herbal preparations generally selfand are administered. Often they are purchased through native herbalists who prescribe one or more herbs or preparations on the basis of medical and health approaches that often include concepts of attaining balance in the client's body, psychology, and spirit. Consequently, it is often difficult to assess the relative value of herbal remedies versus prescription drugs on a one to one basis. Indeed, herbal remedies of all types, including those from China, are composed of a multitude of ingredients whose interactions with the body are exceedingly complex. A high level of sophistication of research methodology is necessary to describe the interaction between the human body and substances as complex as those contained in many herbal remedies (Bensky and Gamble, 1993).

The increased use of plant medicines has potential for improving public health and lowering health care costs. Phytomedicines, if combined with the preventive model of medical practice, could be among the most effective, practical ways to shift the