

Role of digital breast tomosynthesis and contrast enhanced mammography in characterization of breast masses

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Pasant Mohamed Abo- Elhoda Darwish M.B.B.Ch

Supervised by

Dr. Hala Abou Senna

Professor of Radio diagnosis Faculty of Medicine - Ain Shams University

Dr. Nivine Chalabi

Assistant Professor of Radio Diagnosis Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2016

LIST OF THE CONTENTS

		Page
		Number
I.	INTRODUCTION	1
II.	AIM OF THE WORK	4
III.	ANATOMY OF THE BREAST WITH RADIOLOGICAL OVERVIEW.	5
IV.	PATHOLOGY OF BREAST MASSES	31
V.	TECHNICAL BACKGROUND	60
VI.	MANIFESTATIONS OF BREAST MASSES WITH ILLUSTRATIVE CASES	89
VII.	SUMMARY AND CONCLUSION	113
VIII.	REFERENCES	115
IX.	ARABIC SUMMARY	135

المقدمة

ان الماموجرام هو أشعة الثدي السينية التي تمكنا الكشف عن الكتل الثدييه قبل ان يشعر بها المريض او ان تسبب اي اعراض و يبقي الماموجرام الفحص الأكثر شيوعاً للكشف عن وجود سرطان الثدي ، و هو يساعد علي الحد من الوفيات بنسبة 7%.

لاستخدام الماموجرام ،فمن الممكن ان يعطينا الفحص نتائج سلبية بالرغم من وجود كتل في الثدي ، و لقد اثبت ان ٢٠% من أورام الثدي لا تشخص عند وقت المسح الدوري لافات الثدي .

واحده من العقبات التي تقبلنا في تشخيص المرض ، هو ان الكتل الثديبه لها نفس الكثافة مثل الانسجه المحيطة بها ، و لهذا ففي كثير من الأحيان من الصعب رؤية الورم في الاشعه التقليدية . مما أتاح لنا الفرصة لاكتشاف تقنيات جديدة ، مثل التصوير المقطعي باستخدام الاشعة السينيية و استخدام الصبغة غير المتأينة مع الماموجرام الرقمي و هذا يساعدنا على تحسين اكتشاف الكتل الثدييه .

ان التصوير المقطعي باستخدام الاشعة السينيية هو طريقة جديدة و مثيره لتحسين الكشف عن الكتل الثدييه يتم الحصول علي صوره للثدي من عدة زاويه مختلفة لتكوين شرائح منفصلة بسماكة ١ مل ، ويتم بعد ذلك استبعاد الأنسجة المتداخلة للحصول علي صورة ثلاثية الأبعاد واضحة للورم.

ان حقن الصبغة وريديا مع الماموجرام الرقمي يمكنا من تصوير الثدي عن طريق أخذ سلسلة من الصور التي تظهر تدفق الصبغة لتعزيز رؤية الأوعية الدمويه بالورم للمريض، و رسم خريطه لها وقد اثبتت الابحاث ان استخدام الصبغة غير المتأينة مع الماموجرام الرقمي قد أظهرت ٨٠% من الأورام التي تم التأكد انها خبيثة النوع، و انه يوجد علاقة وثيقة بين تدفق الصبغة و نوع الورم .

ان حقن الصبغة وريديا مع الماموجرام الرقمي يمكنا من تصوير الثدي عن طريق أخذ سلسلة من الصور التي تظهر تدفق الصبغة لتعزيز رؤية الأوعية الدمويه بالورم للمريض.

الهدف من الدراسة

تهدف هذة الدراسه الي توضيح دور التصوير المقطعي باستخدام الاشعة السينيية و الأشعة الرقمية للقدي بالصبغة في تصنيف الكتل الثدييه .

دور التصوير المقطعي باستخدام الاشعة السينيية للثدي و الأشعة الرقمية للثدي بالصبغة في تصنيف الكتل الثدييه

رسالة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من الطبيبة بسنت محمد أبو الهدى درويش بكالوريوس الطب و الجراحة

تحت إشراف د/ هالة أبو سنة

أستاذ الأشعة التشخيصية كلية طب جامعة عين شمس

د/ نيفين شلبي

أستاذ مساعد الاشعة التشخيصية كلية طب-عين شمس

كلية الطب جامعة عين شمس ٢٠١٦

LIST OF ABBREVIATIONS

ALH: Atypical lobular hyperplasia

ACR: American college of radiology

AJCC: The American Joint Committee of Cancer

BB: Breast Biopsy

BI-RADS: Breast Imaging and Reporting Data Systems

BPBD: Benign proliferative breast disease

BRCA: Breast cancer

BSE: Breast self examination

CC: Cranio caudal

CCDs: Charge coupled devices

CE: contrast enhancement

CEDM: contrast enhanced digital mammography

CR: Computed Radiography

DBT: Digital breast tomosynthesis

DCIS: Ductal carcinoma in situ

DE: Dual energy

DECM: Dual energy contrast mammography

DM: Digital mammography

ERT: estrogen replacement therapy.

ETD: Extra lobular terminal ductule

FDA: Food and drug Administration

FIG: Figure

FNA: Fine needle aspiration

FFD: Full field digital mammography

HER2: Human epidermal growth factor receptor 2

IBT: Inflammatory breast cancer

IDC: Invasive ductal carcinoma

ILC: Invasive (infiltrating) lobular carcinoma

ITD: Intralobular terminal ductule

LCIS: Lobular carcinoma in situ

LT: Left

MIP: Maximum intensity Projection

MLO: Medio lateral oblique

MR: Magnetic resonance

MRI: Magnetic resonance Imaging

NOS: Invasive ducal carcinoma, not otherwise specific

RT: Right

SA: Sclerosing adenosis.

TDLU: terminal duct-lobular unit

TNM: Tumor, Nodes, metastasis

TS: Temporal subtraction

US: Ultrasound

WHO: world Health Organization.

2D: 2 dimensions

3D: 3 dimensions

LIST OF FIGURES

Figure	Description	
		number
Figure (1)	Surface anatomy of the breast	6
Figure (2)	Superimposed are mistaken for skin tags or moles	7
Figure (3)	Breast development	8
Figure (4)	Adult breast	9
Figure (5)	The intra & extra lobular ducts	10
Figure (6)	Histology of a lobule	11
Figure (7)	The ductal system of the breast	12
Figure (8)	Blood supply of the breast	15
Figure (9)	Diagram of the principle pathway of lymphatic drainage	17
Figure (10)	The lymphnodes of the axilla	20
Figure (11)	CC &MLO view	23
Figure (12)	MLO & CC showing glandular breast	25
Figure (13)	ACR A	27
Figure (14)	ACR B	28
Figure (15)	ACR C	29
Figure (16)	ACR D	30
Figure (17)	Histopathological findings in women seeking investigation	31
	for breast lump	
Figure (18)	Cancer distribution in breast quarters	40
Figure (19)	LCIS	46
Figure (20)	LCIS(lobular neoplasia)	46
Figure (21)	DCIS	48
Figure (22)	DCIS (microscopic picture)	48
Figure (23)	Infiltrating ductal carcinoma	51
Figure (24)	Infiltrating ductal carcinoma , no specific type	52
Figure (25)	Paget's disease	56
Figure (26)	An image for mammography machine	60
Figure (27)	A diagram for screen film and digital mammograohy	61
Figure (28)	How DBT images are obtained	63
Figure (29)	Photograph of the experimental breast tomosynthesis unit	65

Figure (30)	Multiple angles of breast tomosynthesis images	66
Figure (31)	Basic technology principles of brest tomosynthesis	67
Figure (32)	Reconstructed tomosynthesies slices	69
Figure (33)	IDC by conventional mammography & tomosynthesis	71
Figure (34)	DCIS by DM and DBT	72
Figure (35)	Microcalcification in DM and MIP image	73
Figure (36)	Artifacts in DBT	74
Figure (37)	Fibroglandular tissue in DBT and DM	75
Figure (38)	imaging process of CEDM	77
Figure (39)	Imaging procedure of dual energy CEDM	78
Figure (40)	imaging procedure of temporal subtraction CEDM	80
Figure (41)	IDC and fibroadenoma in temporal CEDM	81
Figure (42)	Curves of temporal CEDM	83
Figure (43)	Mammography lexicon	89
Figure (44)	Benign Calcification	93
Figure (45)	Suspicious calcification	94
Figure (46)	BI-RADS I	95
Figure (47)	BI-RADS II	96
Figure (48)	BI-RADS III	97
Figure (49)	BI-RADS III follow up	98
Figure (50)	BI-RADS IV	99
Figure (51)	BI-RADS V	99
Figure (52)	BI-RADS VI	100
Figure (53)	Cyst by mammogram	101
Figure (54)	Ductal carcinoma by mammogram	102
Figure (55)	Spicualted mass by mammogram	103
Figure (56)	Cancer in a dense breast	104
Figure (57)	Occult breast cancer	105
Figure (58)	Mixed lobular and ductal carcinoma	106
Figure (59)	Invasive lobular Carcinoma	107
Figure (60)	Malignant lesion by CEDM	108
Figure (61)	Granulomatous Mastitis	109
Figure (62)	DCIS in Tomosynthesies & CEDM	110
Figure (63)	IDC	111
Figure (64)	IDC	112

INTRODUCTION

A mammogram is a breast X-ray that can detect breast masses before they are large enough to feel or cause symptoms (*Hubbard et al.*, 2011), it is the most commonly screening method used for breast masses detection, it helped to reduce mortality of breast cancer patient by 20 percent(*Welsh et al.*,2014).

The limitations of mammography are well known. False – negative results occur when mammograms appear normal even though breast mass is present. Overall, screening mammograms miss up to 20 percent of breast cancers that are present at the time of screening (National cancer institute, 2010).

The main problem is that breast masses have the same density as surrounding tissue, and can be obscured by overlapping tissue. With the mass potentially obscured by overlapping tissue in two-dimensional (2-D) conventional mammography, a 3-D procedure, such as tomosynthesis,

may help solve this problem. Also, there is hope that the use of intravascular contrast material with digital mammography will take advantage of the mass vascularity to characterize its type. (*Alakhras et al.*,2013).

Digital Breast Tomosynthesis is a relatively new and exciting modality for characterization. Multiple low dose X-ray images are acquired in an arc and reconstructed to form 3D image thus minimizing the impact of overlying breast tissue and improving the lesion conspicuity. The process is similar to a film tomogram and Computed tomography, then post processing allows reconstruction of any slice needed. The radiation dose is the same as a conventional digital dose. The separate slices are 1mm thick resulting in a high resolution. Overlapping shadows and structures are eliminated. The image is displayed as static slices or a cine loop and a regular 2-D image is obtained at the same time. (*Rafferty et al.*, 2013).

Contrast-enhanced mammography is used to obtain more functional information from the neovascularity found in malignant tumors. It involves injecting the contrast agent intravenously while the patient is imaged with a sequence of digital mammograms that show the flow of the contrast agent over time. (*Dormain et al.*,2012).

The use of contrast medium takes advantage of mapping abnormal blood flow. Early evaluation of the feasibility of the use of contrast medium with digital mammography revealed 80% of pathological proven breast carcinomas were enhanced with excellent correlation between the size of enhancement and the histologic type of tumor. (*Balleyguier et al.*, 2009).