The Incidence Of Occult Hepatitis B Among HCV Chronic Patients (Responders and Nonresponders) Receiving Combined Therapy

Thesis

Submitted for Partial fulfillment of M.Sc. Degree in Internal Medicine

Ву

Ahmed Mostafa Ahmed Ibrahim M.B.B.Ch

Supervised by:

Prof. Dr. Yehia Mohamed El-Shazly

Professor of Internal Medicine Faculty of Medicine Ain Shams University

Assist. Prof. Dr. Khaled Zakaria El-Karmoty

Assistant Professor of Internal Medicine Faculty of Medicine Ain Shams University

Dr. Ahmed Ali Monis

Lecturer of Internal Medicine Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2006

ACKNOWLEDGMENT

First of all. I wish to express my sincere thanks to **GOD**.

I would like to express my deepest gratitude and profound appreciation to Professor Dr. Yehia El-Shazly, Professor of internal medicine, Ain Shams University for his great support, continuous advice and encouragement. His experience certainly made this work not only possible but also enjoyable. I owe him much I can express.

I would like to express my deepest gratitude and profound appreciation to Dr. Khaled El-Karmoty, Assistant Professor of internal medicine, Ain Shams University for his kind support, continuous advice and encouragement.

I would express my deepest gratitude to **Dr. Ahmed Ali Monis**,

Lecturer of internal medicine, Ain Shams University for his comprehensive help through the work.

AIM OF THE WORK

- 1. Determine the incidence of occult HBV DNA with absent HBsAg among chronic HCV patients receiving combination therapy.
- 2. Relation to response to treatment will be studied.

Contents

Title	Page
List of abbreviations	I
List of tables	II
List of figures and graphs	III
Introduction	1
Aim of the work	3
 Review of Literature 	4
Chapter I - Therapy of chronic hepatitis C	4
I - Interferons	6
A) Types of human interferons	7
B) Mechanism of action of interferon	9
C) Interferon production in acute and chronic	10
hepatitis	
D) Availability of interferons	10
E) Administration of interferons	11
F) Contraindications to interferon therapy	11
G) Side effects to interferon therapy	12
H) Usefulness of alpha interferon for	17
treatment of hepatitis C	
I) Pegylated Interferons	21
J) Pegylated interferon alpha plus ribavirin	23
as the first line of treatment in naïve patient with	
chronic hepatitis Cc	
K) Definitions of interferon response	24
L) Predictors of interferon efficacy	25
II- Ribavirin and its role as adjuvant agent	30
with interferon in therapy of chronic hepatitis C	
Chapter II – Occult hepatitis B	33
Section I- Hepatitis B Virus	33
A) Virology	33
B) Epidemiology	35
C) Risk factors of HBV transmission	37
D) Pathogenesis of HBV infection	38

E) Clinical Picture of HBV infection	39
F) Diagnosis of HBV infection	40
G) Prevention of HBV infection	44
Section II- Occult Hepatitis B	45
A) Introduction	45
B) HBsAg and DNA testing	46
C) Clinical Scenarios associated with occult	48
HBV infection	
D) Mechanism of occult HBV infection	50
E) Prevalence of occult HBV infection	53
F) Occult HBV infection and transmission	54
of HBV infection	
G) Occult HBV infection and related chronic	56
liver disease	
H) Occult HBV infection and HCC	60
Section III- Occult HBV infection and chronic	62
HCV infection	
Patients and Methods	68
Results	72
Discussion	86
Summary and Conclusion	96
References	100
Arabic Summary	132

List of Abbreviations

α-INF	Alpha interferon
μg	Microgram
μmol/L	Micro mill mol
AA	Amino acids
AASLD	American Association for Study of Liver
	Diseases
ALP	Alkaline phosphates
ALT	Alanine aminotransferase
Anti-HBc	Hepatitis B core antibody
Anti-HBe	Hepatitis B e antibody
Anti-HBs	Hepatitis B surface antibody
Anti-HCV	Antibodies against hepatitis C virus
AST	Aspartate aminotransferase
BMI	Body mass index
cccDNA	Covalently closed circular DNA
CTLs	Cytotoxic T lymphocytes
DNA	Deoxyribonucleic acid
ELISA	Enzyme linked immunosorbant assay
EVR	Early virological response
g/dl	Gram per deciliter
HBcAg	Hepatitis B core antigen
HBeAg	Hepatitis e antigen
HBIG	Hepatitis B Immune Globulin
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HDV	Hepatitis Delta virus
HLA	Human leukocyte antigen
HS	Highly significant
IgG	Immunoglobulin G
IgM	Immunoglobulin M
IU/ml	International unit per milliliter

Kd	Kilo Dalton
Kg	Kilogram
LCF	Liver cell failure
mg/dL	Milligram per deciliter
MIU	Million international unit
Ml	Milliliter
ng	Nanogram
NK	Natural killer
NS	Non significant
OAS	oligo-adenylate synthetase
PBMCs	periphral blood mononuclear cells
PC	Prothrombin concentration
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
Pg	Pico gram
QN	Quantitative
RNA	Ribonucleic acid
S	Significant
SC	Subcutaneous
SD	Standard deviation
STD	Sexually transmitted diseases
SVR	Sustained virological response
T3	triiodothyronine
T4	thyroxine
TP	Total proteins
TSH	Thyroid stimulating hormone
WHO	World Health Organization
β	Beta

List of tables

Table	Title	Page
Table (1)	Possible factors predicting a	7
	favorable response to antiviral	
	therapy in chronic HCV infection	
Table (2)	Potential contraindications to	13
	pegylated interferon and ribavirin	
Table (3)	Possible adverse effects of pegylated	19
	interferon and ribavirin therapy	
Table (4)	Typical serological profile in patient	42
	with HBV infection	
T 11 (5)	with TIB v infection	5 4
Table (5)	Clinical groups at risk of occult HBV	54
	infection	
Table (6)		65
	Clinical outcomes associated with	
	occult hepatitis B in patients with	
	chronic hepatitis C coinfection	
Table (7)	Descriptive statistics	76
Table (8)	Showing comparison between	77
	responders and non-responders as	
	regards age	
Table (9)	Descriptive statistics showing the	77
	frequency of sex distribution	
Table(10)	Showing comparison between	78
	responders and non-responders as	
	regards sex distribution	
TD 11 (11)	regards sea distribution	70
Table (11)	Showing comparison between	79

	responders and non-responders as	
	regards weight distribution	
Table (12)	Descriptive statistics showing the	80
	frequency of significant diseases	
Table (13)	Showing comparison between	80
	responders and non-responders as	
	regards presence of significant	
	diseases	
Table (14)	Descriptive statistics showing the frequency of serum ALT folds	81
Table (15)	Showing comparison between	81
	responders and non-responders as	
	regards serum ALT folds	
Table (16)		82
14010 (10)	Showing comparison between	02
	responders and non-responders as	
	regards serum ALT level	
Table (17)	Descriptive statistics showing the	82
	frequency of early response at 12	
	weeks	
Table (18)		83
14010 (10)	Showing comparison between	0.5
	responders and non-responders as	
	regards response at 12 weeks	
Table (19)	Descriptive statistics showing the	84
	frequency of response at 48 weeks	
Table (20)	Showing a comparison between	84
	responders and non responders as	
	responders and non responders as	

	regards response at 48 week	
Table (21)	Descriptive statistics showing the frequency of HBV DNA at 48 weeks	85
Table (22)	Showing comparison between responders and non-responders as regards presence of HBV DNA	85

List of figures and graphs

Figure	Title	Page
Figure (1)	Genome of hepatitis B virus	34
Figure (2)	Mechanism of Hepatitis B virus	35
	replication and the site of action of	
	different treatment methods	
Figure (3)	Geographic distribution of chronic	36
	hepatitis B infection, shown as	
	HBsAg prevalence	
Figure (4)	A model of occult hepatitis B	48
	highlighting the potential role of the	
	immune system	
Graph (1)		
Graph (2)		
Graph (3)		
Graph (4)		
Graph (5)		
Graph (6)		
Graph (7)		

INTRODUCTION

Hepatitis B & C are the most common causes of chronic liver disease world wide. Acute infection with hepatitis B virus (HBV) or hepatitis C virus (HCV) may result in chronic infection. Co-infection of both viruses can occur because of shared routes of infection e.g. blood Transfusion, hemodialysis or organ Transplant (*Crockett and Keeffe, 2005*).

Hepatitis B virus infections in patients who lack detectable hepatitis B surface Ag (HBsAg) with or without serologic markers of previous infection (HBsAb or hepatitis B core Ab) are called occult infection. Lack of circulating HBsAg in such patients are unknown but recent observation have suggested that the lack of HBsAg may be due to rearrangement of HBV genome that interfere with expression or lead to production of an antigenically modified S protein. Occult HBV infection has been frequently identified in patients with HCV related chronic hepatitis; considerable data suggests that this occult infection may contribute to damage, development chronic liver of hepatocellular carcinoma and diminished response to interferon. (Cacciola et al., 1999).

Detection of occult HBV infection is done by detection of HBV DNA through PCR in serum or liver biopsy, since viral DNA levels in occult HBV are very low, the identification of occult HBV is strongly dependant on specificity and sensitivity of the assay (*Torbenson and Thomas*, 2002).

In patients chronically infected with HCV, combination therapy with ribavirin plus alpha 2 interferon has greatly improved the rate of sustained biochemical and virological response compared to those achieve with interferon monotherapy (*Larrat et al.*, 2003).

The clinical significance of occult hepatitis B alone or in combination with HCV infection remains unsettled, previous epidemiologic and molecular studies have indicated that persistence of HBV infection may be associated with the development of HCC in HBsAg negative patients (*Kao et al.*, 2002).

CHAPTER I THERAPY OF CHRONIC HEPATITIS C

Introduction

Hepatitis due to hepatitis C virus (HCV) infection is an important public health problem worldwide (*Andreone et al.*, 1999). HCV causes hepatitis, cirrhosis, and hepatocellular carcinoma (HCC), and globally reported anti-HCV prevalence ranges between 1% and 3% (*Leung*, 2002). Its prevalence varies from 0.01% in United Kingdom to 17%-20% in Egypt (*Abdel-Wahab et al.*, 1994).

Despite the introduction of laboratory tests to screen national blood supplies, HCV remains the most common cause of post-transfusion hepatitis worldwide because unscreened blood and blood products are still used in many developing countries or economies in transition (*Kim*, 2002).

The WHO has estimated that 170 million people worldwide are infected with hepatitis C virus (HCV). Reports indicate that the prevalence rates for anti-HCV ranges from 0.5–1% in low prevalence areas such as North America to >20% in high prevalence areas such as Egypt (*World Health Organization*, 1999). Acute infection with HCV is followed by chronic infection in 80% of cases with increased risk for liver cirrhosis and hepatocellular carcinoma (*Liang et al.*, 2000).

HCV genotype differences are of considerable clinical significance because they affect responses to antiviral therapy. Genotype 4 predominates throughout the Middle East and parts of Africa (*Abdel-Aziz et al.*, 2000), often in association with high population prevalence as in Egypt (*Habib et al.*, 2001),