

LABEL-FREE HIGHLY SENSITIVE BIOSENSORS BASED ON SILICON ON INSULATOR

By

Ahmed Samy Saad El-Din Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Engineering Physics

LABEL-FREE HIGHLY SENSITIVE BIOSENSORS BASED ON SILICON ON INSULATOR

By **Ahmed Samy Saad El-Din Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Engineering Physics

Under the Supervision of

Dr. Essam M. A. ELKaramany

Dr. Mohamed Farhat Hameed

Associate Professor Engineering Mathematics and Physics Faculty of Engineering, Cairo University Associate Professor Mathematics and Engineering Physics Faculty of Engineering, Mansoura University

LABEL-FREE HIGHLY SENSITIVE BIOSENSORS BASED ON SILICON ON INSULATOR

By **Ahmed Samy Saad El-Din Ahmed**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in **Engineering Physics**

Approved by the Examining Committee

Dr. Essam M. A. Elkaramany,	(Thesis Main Advisor)
Prof. Dr. Nadia H. Rafat,	(Internal Examiner)
Prof. Dr. Adel H. Phillips,	(External Examiner)

- Professor, Faculty of Engineering, Ain Shams university

Engineer's Name: Ahmed Samy Saad El-Din Ahmed

Date of Birth: 2/6/1986 **Nationality:** Egyptian

E-mail: Ahmed samy2086@yahoo.com

Phone: 01280980888

Address: 7 Eltakafol St., El taawn station, Al Haram

Registration Date: 1/3/2014 **Awarding Date:**/.../

Degree: Doctor of Philosophy

Department: Engineering Mathematics and Physics

Supervisors:

Dr. Essam M. A. ELKaramany Dr. Mohamed Farhat O. Hameed

Associate professor, Faculty of Engineering, Mansoura

university

Examiners:

Prof. Adel H. Phillips (External examiner)
Professor, Faculty of Engineering, Ain Shams university
Prof. Nadia H. Rafat (Internal examiner)
Dr. Essam M. A. ElKaramany (Thesis main advisor)

Title of Thesis:

LABEL-FREE HIGHLY SENSITIVE BIOSENSORS BASED ON SILICON ON INSULATOR

Key Words:

DNA hybridization; Label-free biosensor; Slot-waveguide; SOI; Surface Plasmon

Summary:

A highly sensitive hybrid plasmonic slot-waveguide (HPSW) biosensors based on siliconon-insulator (SOI) are proposed and analyzed for DNA hybridization detection. The reported designs are based on increasing the light interaction with the sensing region by using slot-waveguide with plasmonic material.

Due to the high index contrast and plasmonic effect, an ultra-high optical confinement is achieved in the low-index regions which enables the detection of the smallest change in the analyte refractive index with high sensitivity.

In this study, two different plasmonic materials (gold, and titanium nitride) are used for the proposed designs. The simulation results are calculated using full vectorial finite element method (FVFEM). The reported biosensors have high sensitivity of 1890.4 nm/RIU with a detection limit of 2.65×10^{-6} RIU with gold material, and 1190 nm/RIU with a detection limit of 4.2×10^{-6} RIU with titanium nitride material, which are the highest in the literature to the best of our knowledge.

Acknowledgment

First of all I must thank ALLAH for his great mercy supporting me all the way till the end. If it weren't for his help, I wouldn't have reached this point.

My deep gratitude goes to Assoc. Prof. Essam M. A. ELKaramany, my main supervisor, for his patient guidance, encouragement, and support throughout my Ph.D. study. Your invaluable guidance helped me in all the time of research, as well as will keep encouraging me in my future career and life.

I would like especially to thank Assoc. Prof. Mohamed Farhat Hameed, my co-supervisor, for his patient guidance, valuable discussions, and constructive suggestions on the direction of my researches, and scientific writing during the past years, as well as will keep encouraging me in my future career and life. Your immense knowledge, rigorous working attitude and enthusiasm in research always encouraged me to work toward the best.

Many thanks to Prof. Salah S. A. Obayya, Director of Center for Photonics and Smart Materials (CPSM) Zewail City of Science and Technology, for his kind help and guidances in my Ph. D studies, and giving me the opportunity to work in a fruitful research environment.

My deepest gratitude to my parents and parents in law, who are unconditionally loving, supporting and encouraging me. Thanks to my beloved wife, Salma Yehia, thank you for your support and endless love when life was tough; My son, Youssef, you are the best gift for me!

Table of Contents

Acknowledgment	i
Table of contents	ii
List of Tables	iv
List of Figures	v
List of Symbols and Abbreviations.	viii
Abstract	xi
Chapter (1): Introduction	1
1.1. Background	1
1.2. Aims and Objectives	3
1.3. Thesis Structure	3
Chapter (2): Principles of Optical Sensor	5
2.1. Introduction	5
2.2. Classifications of Optical Sensors	7
A. Classification based on the working principle	7
I. Intensity-Modulated Optical Sensors	7
II. Phase-Modulated Optical Sensors	8
III. Wavelength-Modulated (Spectrometric) Optical Sensors	8
IV. Polarization-Modulated (polarimetric) Optical Sensors	9
B. Classification based on the Sensor's Configuration	10
I. Surface Plasmon Resonance	10
II. Interferometric Optical Sensors	11
III. Ring Resonator Optical Sensors	13
IV. Photonic Crystal Optical Sensors	15
Chapter (3): Silicon-On-Insulator (SOI)	17
3.1 Introduction	17
3.2 Advantages of SOI	18
3.3 Slot Waveguide based on Silicon on Insulator	18
3.4 Recent technologies in photonic platforms	22
3.4.1 Silicon on sapphire (SOS)	23
3.4.2 Novel Substrates for Si Photonics in Mid-IR Range:	23
3.4.2.1 Silicon on nitride (SON)	23
3.4.2.2 Silicon on calcium fluoride	23
3.5 Fabrication Methods:	24
3.5.1 Separation by IMplantation of OXygen (SIMOX) technology	24
3.5.2 Bonded Silicon on Insulator (BSOI) and Bond and Etch-back Silicon o	n Insulator
(BESOI) processes	24

3.5.3	Eltran® process	25
3.5.4	Smart Cut TM technology	26
Chapter (4): Finite Element Method with Variational Approach	28
4.1. In	troduction	28
4.2. Fu	ıll Vectorial Finite Element Method (FV-FEM)	28
4.2.1.	Computational domain discretization	28
4.2.2.	Set-up element interpolation	29
4.2.3.	Fundamental electromagnetic field equations	34
Max	well's equations	34
The	Wave Equation	35
4.2.4.	Variational formulation	37
4.2.5.	The vector formulation	37
Chapter (5): Numerical Results	40
5.1 In	troduction:	40
5.2 De	esign Considerations:	42
5.3 Si	mulation Results:	43
5.3.1	HPSW with Gold as a Plasmonic Material:	43
5.3.2	HPSW with TiN as an Alternative Plasmonic material	55
Chapter (6): Conclusions and Future Work	64
REFERE	NCE	65

List of Tables

Table 2.1: different classifications of the optical sensors	7
Table 5.1 The tolerance of different geometric parameters of the proposed design	55
Table 5.2 Comparison between the sensitivity of the suggested designs with those i	n the
literature	63

List of Figures

Figure 2.1 Optical sensing system.	5
Figure 2.2 Different sensing mechanisms.	6
Figure 2.3 Reference arm configuration	8
Figure 2.4 The sensor chip detects the refractive index change in the immediate vice	inity of a
surface layer by the plasmonic resonance which observed as a sharp shad	ow in the
reflected light at an angle that depends on the effective index of the mo	de at the
surface, this angle will be shifted when target-receptor binding occurs	10
Figure 2.5 Different coupling methods for SPR sensor configuration. (a) Prism cou	pling, (b)
waveguide coupling, and (c) optical fiber coupling.	11
Figure 2.6 Mach-Zehnder Interferometer configuration.	12
Figure 2.7 Top view of the slot-waveguide based microring resonator.	15
Figure 2.8 (a) Photonic crystal waveguide, and (b) Photonic crystal fiber	16
Figure 3.1 Silicon on insulator (SOI) structure	17
Figure 3.2 Slot waveguide	19
Figure 3.3 E-field distribution at wavelength 1550nm for (a) TE-mode and (b) TM-n	10de 20
Figure 3.4 The field plot along x-axis	20
Figure 3.5 Horizontal Slot Waveguide	21
Figure 3.6 E-field distribution at wavelength 1550nm for TM mode	21
Figure 3.7 Typical steps used in SIMOX process	24
Figure 3.8 Typical steps used in BSOI process	25
Figure 3.9 Eltran® process as described to produce SOI wafers	26
Figure 3.10 Smart Cut TM process for producing SOI wafers	27
Figure 4.1 Pascal triangle exhibiting the relationship in between element node number	er and the
term number in the shape function (Nei).	30
Figure 4.2 (a) and (b) Linear triangle and tetrahedral element for two-dimensional a	and three-
dimensional domain discretization. The Q is taken as any point inside the	e element
of arbitrary coordinate (x, y) for 2D and (x, y, z) for 3D	30
Figure 4.3 Linear and quadratic elements and its node numbering scheme dependi	ng on the
element order. (a) and (b) are the linear and quadratic 2D triangular element	nt. (c) and
(d) are the 3D linear and quadratic tetrahedral elements.	32
Figure 5.1 Cross section of the suggested HPSW biosensor.	43

Figure 5.2 Co	onfinement in the slot regions for the suggested design at λ =1.55 μ m (a) norm E
COI	mponent for the quasi-TE mode, (b) E_x component for the quasi-TE mode, and (c)
Po	wer flow P_z for the quasi-TE mode. Insets are the field plots and power flow along
х-а	axis, (red dash lines are referred to the cross section along x-axis)44
Figure 5.3 Va	ariation of the n _{eff} of the quasi-TE mode of the suggested design with ssDNA and
dsI	DNA layers, and δn _{eff} with the silicon nanowire width GW45
Figure 5.4 E _x	component for the quasi-TE-mode at GW=200nm
Figure 5.5 Va	ariation of the power density of the quasi-TE mode of the suggested design in the
ssI	DNA and dsDNA layers with the silicon nanowires width GW47
Figure 5.6 Va	ariation of the neff of the quasi-TE mode of the suggested design with the ssDNA
and	d dsDNA layers and δneff with the slot width SW48
Figure 5.7 Va	ariation of the power density of the quasi-TE mode of the suggested design with
the	e ssDNA and dsDNA cases with the slot width SW
Figure 5.8 Va	ariation of the n _{eff} of the quasi-TE mode of the suggested design with the ssDNA
and	d dsDNA layers and δn _{eff} with the silicon nanowire height GH49
Figure 5.9 Va	ariation of the n _{eff} of the quasi-TE mode of the suggested design with the ssDNA
and	d dsDNA layers and δn_{eff} with the slot width between gold and silicon nanowire
PS	W
Figure 5.10 V	Variation of the normalized power confinement and power density of the quasi-TE
mo	ode of the suggested design with the refractive index change of the sensing
ma	iterial51
Figure 5.11	Variation of the power density of the quasi-TE mode of the suggested design
thr	rough the (a) dsDNA and (b) ssDNA layers with the silicon nanowires width GW
for	the studied four cases
Figure 5.12 T	Three dimensional diagram of the HPSW incorporated with straight resonator, (the
two	o arrows referred to the power input/output of the electromagnetic field)53
Figure 5.13 T	The x-component of the electric field of the supported quasi TE-mode at (a) 1360
nm	n, and (b) 1535.7 nm (resonance)
Figure 5.14 V	Vavelength dependent S ₂₁ parameter for the ssDNA and dsDNA cases55
Figure 5.15 C	Confinement in the slot regions of the suggested design at $\lambda = 1550$ nm (a) Norm
COI	mponent of the quasi TE slots waveguide mode, (b) Power flow Pz of the quasi
TE	slots waveguide mode. Insets are the field plots and power flow along x-axis (red
das	sh lines are referred to the cross section along x-axis)

Figure 5.16 Variation of the n _{eff} of the quasi TE slots waveguide mode of the suggested design
with ssDNA and dsDNA layers, and δn_{eff} with the silicon nanowire width GW57
Figure 5.17 Variation of the n_{eff} of the quasi TE slots waveguide mode of the suggested design
with ssDNA and dsDNA layers, and δneff with the slot width SW58
Figure 5.18 Variation of the n_{eff} of the quasi TE slots waveguide mode of the suggested design
with ssDNA and dsDNA layers, and δn_{eff} with the slot width between TiN and
silicon nanowire PSW
Figure 5.19 Variation of the n_{eff} of the quasi TE slots waveguide mode of the suggested design
with ssDNA and dsDNA layers, and δneff with the silicon nanowire height GH, field
plots at GH= 280nm, 300, and 340nm as insets at $\lambda = 1550$ nm
Figure 5.20 Variation of the normalized power confinement of the supported quasi TE mode
of the reported design for the ssDNA and dsDNA cases with the slot width SW60
Figure 5.21 Variation of the normalized power confinement of the supported quasi TE mode
of the reported design for the ssDNA and dsDNA cases with the silicon nanowires
width GW61
Figure 5.22 The x-component of the electric field of the supported mode at wavelength of (a)
1460.323 nm (resonance), and (b) 1250 nm, respectively
Figure 5.23 The wavelength dependent transmission coefficient S_{21} for the ssDNA and dsDNA
cases

List of Symbols and Abbreviations

Symbols

Ae Area of element (e)

Ag Silver
Au Gold

B Magnetic flux density
CaF₂ Calcium Fluoride

Cu Copper

D Electric flux density

E Electric field vector

 $E_0 \hspace{1cm} \text{Amplitude of the electric field} \\ E_z \hspace{1cm} \text{z-component of the electric field}$

GaAs Gallium Arsenide

Ge Germanium
GH Guide height
GW Guide width
I intensity

InP Indium Phosphide
J Current density
K wavenumber

Lie Lagrange interpolation polynomial for

element (e) and node (i)

LiNbO₃ Lithium Niobate

n Refractive index

N_ie Shape function correlated with node (i)

PSW Plasmonic slot width

P_z z-component of the power flow

S sensitivity

S₂₁ Transmission coefficient

S_D Device sensitivity

Si Silicon

SiN_x Silicon Nitride

SiO₂ Silicon dioxide

SW Slot width
T Temperature

TiN Titanium Nitride

t_{plasm} Plasmonic thickness

Ve Volume of the element (e)

β Propagation constant

ε Permittivity

 ε_{r} Relative Permittivity

 $\begin{array}{ccc} \theta & & & Incident \ angle \\ \lambda & & wavelength \\ \Phi_0 & & Phase \ constant \end{array}$

ω Angular frequency

Abbreviations

BESOI Bond and etched-back silicon on insulator

BOX Buried oxide layer

BSA Bovine serum albumin
BSOI Bond silicon on insulator
CCD Charge Coupled Device

CMOS Complementary Metal Oxide-

Semiconductor

CMP Chemical mechanical polishing

DNA Deoxyribonucleic acid dsDNA Double strand DNA

DSP Digital signal processing
ELTRAN Epitaxial layer transfer
FEM Finite Element Method

FV-FEM Full vectorial Finite element method

HP Hybrid Plasmonic

HPSW Hybrid Plasmonic Slot Waveguide

IC Integrated circuit

IR Infrared

IUPAC International Union of Pure and Applied

Chemistry

LVIC Large volume integrated circuit

MEMS Micro electromechanical system

MZI Mach-zehnder interferometer
OSA Optical Spectrum Analyzer

PhC Photonic crystal

PCF Photonic crystal fiber

PD Photodetector

PML Perfect matched layer
PMT Photomultiplier Tube

RI Refractive index

RIU Refractive index unit

SIMOX Separation by Implantation oxygen

SOI Silicon on Insulator
SON Silicon on nitride
SOS Silicon on sapphire

SPP Surface Plasmon Polariation

SPR Surface plasmon resonance

SPW Surface plasmon wave

ssDNA Single strand DNA
TE Transvers electric

TM Transvers magnetic

Abstract

Highly sensitive hybrid plasmonic slot-waveguide (HPSW) biosensors based on silicon-on-insulator (SOI) are proposed and analyzed for DNA hybridization detection. The reported designs are based on increasing the light interaction with the sensing region by using slot-waveguide with plasmonic material. Due to the high index contrast and plasmonic effect, an ultra-high optical confinement is achieved in the low-index regions which enables the detection of the smallest change in the analyte refractive index with high sensitivity. The normalized power confinement, power density, effective index of the supported modes by the HPSWs are analyzed to achieve high power confinement through the suggested biosensors and hence high sensitivity can be obtained. The HPSWs are also incorporated with straight slotted resonator to calculate the sensitivity of the proposed design. In this study, two different plasmonic materials (gold, and titanium nitride) are used for the proposed designs. The simulation results are calculated using full vectorial finite element method (FVFEM). The reported biosensors have high sensitivity of 1890.4 nm/RIU (refractive index unit) with a detection limit of 2.65×10^{-6} RIU with gold material, and 1190 nm/RIU with a detection limit of 4.2×10^{-6} RIU with titanium nitride material, which are the highest in the literature to the best of our knowledge.