

The combination of intravitreal triamcinolone injection and cataract surgery in patients with diabetic retinopathy

Essay
Submitted for Partial Fulfillment of Master Degree
in Ophthalmology

Presented By

Dina Yehia El-Tantawy

(M.B.B.Ch)

Ain Shams University

Under Supervision of

Prof. Dr. Saad Mohamed Rashad

Professor of Ophthalmology Faculty of Medicine – Ain Shams University

Prof. Dr. Mahmoud Ahmed Abd El-Hameed

Professor of Ophthalmology
Faculty of Medicine – Ain Shams University

Dr. Mahmoud Ahmed El Samkary

Lecturer of Ophthalmology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University Cairo-Egypt 2016

إدماج حقن عقار تراي امسينولون داخل الجسم الزجاجي أثناء جراحة الكاتاراكت في المرضى الذين يعانون من اعتلال الشبكية السكري

توطئة للمصول على ورجة (الماجستير في طب وجراحة العيون

مقدم من

الطبيبة/دينا يحيى الطنطاوي

بكالوريوس الطب والجراحة كلية الطب - جامعة عين شمس

تحت إشراف

أ.د/ سعد محمد رشاد

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

أ.د/ محمود أحمد عبدالحميد

أستاذ طب وجراحة العيون كلية الطب - جامعة عين شمس

د/ محمود أحمد السمكري

مدرس طب وجراحة العيون كلية الطب - جامعة عين شمس

> كلية الطب جامعة عين شمس القاهرة — مصر ٢٠١٦

وقل اعملوا فسيرى الله عملوك ورسوله والمؤمنون

سورة التوبة الآية (١٠٥)

ACKNOWLEDGMENT

First and foremost I am grateful to ALLAH the almighty for blessing all the steps of my life.

I would like to express my sincere gratitude to Prof. Dr. Saad Mohamed Rashad, Professor of ophthalmology, Faculty of Medicine, Ain Shams University for giving me the honor of working under his supervision and for kind encouragement and support throughout the work.

I am especially grateful to Prof. Dr. Mahmoud Ahmed Abd El-Hameed, Professor of ophthalmology, Faculty of medicine, Ain Shams University for his kindness, precious advice, continuous encouragement and guidance throughout the preparation of this work.

I am deeply grateful to Dr. Mahmoud Ahmed El Samkary, Lecturer of ophthalmology, Faculty of medicine, Ain Shams University for inspiring me with the idea of this work. His patience, guidance, sincere help and meticulous comments have enlightened my way through out this work.

List of Contents

Contents	No
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Study	3
Fluorescein Angiography	4
The main indication of fluorescein angiography	5
Phases of a normal fluorescein angiography	6
Interpretation of results	8
Risks and complications	10
Optical Coherence Tomography	13
Historical review	13
Physical and optical principle of OCT	14
Recent advances in OCT technologies	17
Interpretation of OCT	19
Advantages of OCT	20
The limitation of OCT	21
Diabetic Retinopathy	22
Epidemiology of diabetic retinopathy	22
Riske factors for diabetic retinopathy	22
Applied anatomy of the retina	24
Pathogenesis of diabetic retinopathy	26
Stages of diabetic retinopathy	36
Triamcinolone Acetonide (TAA)	47
Pharmacology	47
Ocular indications of intravitreal triamcinolone acetonid	48
IVTA for PDR	52
IVTA for diabetic macula edema	53
Limitation of use	56
Technique of IVTA	56
Purification of triamcinolone suspension	57
Dose and duration	59
Side effects and complications	59
Intraocular availability of TAA after intravitreal injection	63
Cataract and Diabetes	64
Pathogenesis of diabetic cataract	64
Cataract surgery in diabetics	66
Management of patient with diabetic retinopathy and	73
undergoing cataract surgery	13
Summary	100
Conclusion	105
References	106

List of Abbreviations

Abbreviation	Full Term
AGEs	Advanced Glycation End products
AR	Aldose Reductase
ARMD	Age-related Macular Degeneration
BCVA	Best Corrected Visual Acuity
CME	Cystoid Macular Edema
CNVM	Choroidal Neovascular Membrane
CSCR	Central Serous Chorioretinopathy
CSME	Clinically Significant Macular Edema
DD	Disc Diameter
DME	Diabetic Macular Edema
DR	Diabetic Retinopathy
ECCE	Extra Capsular Cataract Extraction
ER	Endoplasmic Reticulum
ETDRS	Early Treatment Diabetic Retinopathy Study
FFA	Fundus Fluorescein Angiography
H	Hemorrhage
HPLC	High-Pressure Liquid Chromatography
ILM	Internal Limiting Membrane
IOL	Intraocular Lens
IOP	Intraocular Pressure
IRMA	Intraretinal Microvascular Abnormalities
IV	Intravitreal
IVTA	Intravitreal Triamcinolone Acetonide
LEC	Lens Epithelial Cells
log MAR	Logarithm of the Minimum Angle Of Resolution
Ma	Micro-Aneurysm
mg	Milligram
mm	Millimeter
mmHg	Millimeter Mercury
Mw	Milliwatt
nm	Nanometer
NPDR	Non-Proliferative Diabetic Retinopathy
NSAID's	Non-Steroidal Anti-Inflammatory Drugs
NVD	Neovascularization at Disc
NVE	Neovascularization Elsewhere
OCT	Optical Coherence Tomography
PDR	Proliferative Diabetic Retinopathy
PDT	Photodynamic Therapy
PGD's	Prostaglandins
PPV	Pars Plana Vitrectomy
PRP	Pan Retinal Photocoagulation
PVD	Posterior Vitreous Detachment
RAPD	Relative Afferent Pupillary Defect
RAS	Renin-Angiotensin System
ROS	Reactive Oxygen Species
RPE	Retinal Pigment Epithelium
SD OCT	Spectral Domain OCT
TD OCT	Time Domain OCT

TIMP	Tissue Inhibitor of Metalloproteinase
TRD	Tractional Retinal Detachment
UKPDS	UK Prospective Diabetes Study
um	Micron
UPR	Unfolded Protein Response
VEGF	Vascular Endothelial Growth Factor
VKH	Vogt-Koyanagi-Harada

List of Tables

Tables No.	Title	Page No
1	Pathologic patterns of fluorescence	9

List of Figures

Figure No.	Title	Page No
1	The phases of fundus fluorescein angiography (FFA)	8
_	The petaloid pattern of hyperfluorescence seen in cystoid macular edema following	
2	cataract extraction	9
3	Hypofluorescent lesions of various etiologies	10
4	Optical coherence tomography(OCT)of normal eye	14
5	Normative data for macular thickness, normal macular thickness is shown	17
6	(OCT) of normal eye	20
7	Diagram of the eye shows the retina	26
8	The anatomic classification of area of the posterior pole is contrasted with clinical	26
	classification	
9	The retinal cells and layers	28
10	The capillary bed in diabetic retinopathy	29
11	Retinal microaneurysms	30
12	Retinal haemorrhages	31
13	Diabetic retinopathy with localized macular oedema and circinate lipid exudates in the	32
	area of leaking capillaries	
14	Diabetic retinopathy with multiple cotton wool spots (micro infarcts)	33
15	Severe nonproliferative diabetic retinopathy	34
16	Early proliferative diabetic retinopathy	35
17	The various stages of severity of diabetic retinopathy	37
18	FFA showing non proliferative diabetic retinopathy (NPDR) with focal maculopathy	39
19	Diffuse macular edema: Retinal thickening and scattered hard exudates are present throughout the macula	39
	Fluorescein angiography of cystoid macular edema demonstrates typical petalloid dye	
20	accumulation in the fovea	40
21	Clinically Significant Macular Edema (CSDME)	41
22	FFA showing flower petal appearance of cystoid macular edema	42
22	The hyperfluorescence of clinically significant diabetic macular edema results from	42
23	leakage of dye from microaneurysms	42
24	OCT patterns of DME	44
25	Horizontal Raster line scan shows sponge-like thickening of inner retina	45
26	Horizontal OCT line scan through the foveal center shows an increasing retinal	16
26	thickness with intraretinal cystoid spaces and serous retinal detachment	46
27	OCT line scan shows an increased retinal thickness in the center of macula with taut	46
21	posterior hyaloids membrane	70
28	OCT radial line scan shows increased retinal thickening with vitreoschisis	46
29	IVTA injection	57
30	CME following cataract extraction and IOL implantation in a patient with background	68
	diabetic retinopathy	
31	Metabolic pathways leading to the synthesis of inflammatory mediators	70
32	Fundus picture of complete PRP	78
33	Fundus photographs and OCT done on a case of PDR with CSME befor and one	81
34	month after combined treatment with IVTA and PRP Grid photocoagulation	Q2
	Modified grid laser for diffuse maculopathy	83
35 36	Treatment algorithm for DME	97
30	Treatment argorithm for Divie	91

Introduction

Diabetic retinopathy (DR) is the most common blinding ocular complication of diabetes mellitus (DM). Blindness usually results from diabetic macular edema, non-resolving vitreous hemorrhage and tractional retinal detachment (*Macky et al.*, 2011).

Diabetic retinopathy is a microangiopathy affecting the retinal precapillary arterioles, capillaries and venules. However, larger vessels may also be involved (*Kanski & Bowling*, 2011).

Many studies have documented an association between diabetes and cataract, the risk of cataract increases with increasing duration of diabetes and severity of hyperglycemia (*Raman et al.*, 2010).

Cataract surgery in diabetics is indicated for visual improvement and to allow assessment of retinopathy (*Onakpoya et al.*, 2009).

The visual outcome of such surgery however, depends on the severity of retinopathy. Cataract may prevent the recognition or treatment of sight-threatening retinopathy before surgery. After surgery, vision may be impaired by macular edema and deterioration of retinopathy, severe fibrinous uveitis and capsular opacification (*Chatterjee et al.*, 2004).

It is thought that progression of diabetic retinopathy after cataract extraction, caused by cytokines, Including prostaglandin or vascular endothelial growth factor, this is released from blood—ocular barrier after cataract extraction. Breakdown of the blood—ocular barrier in diabetic eyes, particularly in eyes with DR, is known to be greater than that occur in non-diabetic eyes (*Hayashi et al.*, 2009).

Patients with pre-existing proliferative diabetic retinopathy (PDR) and/or macular edema is more likely to progress rapidly after cataract surgery, therefore preoperative panretinal photocoagulation (PRP) and/or grid laser is recommended (*Javadi & Ghanavati*, 2008).

The severity of cataract sometimes prevents adequate examination or laser treatment of the retina in patients with diagnosed or suspected severe non-proliferative and proliferative diabetic retinopathy. In this case, pan-retinal photocoagulation is done either during the procedure or in the early post-operative period.

If the patient has diabetic maculopathy and/or more advanced retinopathy, consider intravitreal triamcinolone or anti-VEGF at the end of the procedure to reduce macular edema (*Rice*, 2011).

Triamcinolone acetonide is glucocoticosteroid with anti-angiogenic and anti-edematous properties. It has been for various intraocular neovascular and edematous diseases, including diabetic macular edema, proliferating diabetic retinopathy (*Jonas*, 2005).

Giving triamcinolone before surgery as a separate procedure potentiates the progression of lens opacities associated with intraocular steroids, which could have further interference with retinopathy assessment (*Habib et al.*, 2005).

Aim of the Study

The aim is evaluation of intraoperative intravitreal triamcinolone injection during cataract surgery in cases of proliferative diabetic retinopathy associated with macular edema, diagnosed preoperatively by fundus fluorescein angiography and optical coherence tomography on affected and fellow eye.

Fluorescein Angiography

The sodium fluorescein molecule has high degree of fluorescence and the minimal penetrability of the background melanin pigment within the retinal pigment epithelium (RPE). Fluorescein dye proved to be ideal for studying retinal circulation and retinal vasculature (*Laatikainen*, 2004).

It soon becomes obvious that FA was an important aid in both the diagnosis and study of the pathogenesis of posterior ocular diseases, such as diabetic retinopathy and other retinal vascular diseases and macular diseases, in particular.

Routine fluorescein angiography is performed using a 20% solution of fluorescein, 5 ml of which is rapidly injected into an antecubital vein.

The key point of the technique is the ability of the sodium fluorescein molecule to emit green light (wavelength of 520–530 nm) when it is stimulated by blue light (wavelength of 465–490 nm). After injection, 60% of sodium fluorescein is bound to plasma proteins, particularly to albumin. The free dye passes readily across systemic capillaries and enters the tissues and the retinal capillaries do not leak fluorescein. Loss of integrity of the blood–retinal barrier either in the endothelial cells of the retinal vessels or in the RPE permits leakage of free fluorescein into the extracellular spaces of the surrounding neurosensory retina. New vessels in the retina, choroid and iris leak profusely (*Laatikainen*, 2004).

The main indication of fluorescein angiography:

Fluorescein angiography is used mainly for the study of abnormal ocular vasculature. The following are the main indications for Fluorescein angiography (*Bennett*, 2001):

Diabetes mellitus:

- Detecting any significant macular edema which is not clinically obvious;
- Locating the area of edema for laser treatment;
- Differentiating ischemic from exudative diabetic maculopathy;
- Differentiating between intraretinal macroaneurysms (IRMA) and new blood vessels if clinical differentiation is difficult;
- Documentation and follow up.

How dose ocular structures determine the distribution of fluorescein angiography:

Fluorescein cannot diffuse through tight cellular junctions. These are present at two sites within the fundus:

- Retinal blood vessel endothelium
- Retinal pigment epithelium

There are two circulations within the fundus:

> Choroidal circulation:

The fluorescein freely leaks out of the fenestrated choroidal capillaries, and from there through brunche membrane. However tight junctions between retinal pigment epithelium (RPE) cells prevents dye reaching the retina

> Retinal circulation:

The retinal blood vessel endothelial cells are joined by tight junctions that prevent leakage of fluorescein into the retina (the blood retinal barrier). Any leakage from the retinal vessels is abnormal capillaries