

The Role Of Sirtuin 1 in Diabetic Nephropathy

Thesis submitted by

Haidi Shebl Ahmed EL-Ghandour

(B.Sc. in Biochemistry, 2011)

In partial fulfillment of the requirements for the degree of M.Sc degree in Biochemistry

Supervised by

Prof. Dr. Shadia Abd El-Hamid Fathy

Professor of Biochemistry Biochemistry Department Faculty of Science Ain Shams University

Dr. Wafik A.El-Khayat

Colleague of Biochemistry Ain Shams University Hospitals

The late/Prof .Dr. Tahany M. Abd El-Moneam

Professor of Biochemistry Endocrinology Unit Ain Shams University Hospitals

Dr. Doaa M. Ibrahim

Lecturer of Biochemistry Biochemistry Department Ain Shams University

Faculty Of Science Ain Shams University 2017

Biography

Haidi Shebl Ahmed El-Ghandour Name:

of birth:

Date and place 25/12/1989, Tanta, Al-Gharbyah, Egypt

2011 Date of

graduation:

B.Sc. in Biochemistry, *Tanta University*, 2011. **Degree**

awarded:

Diploma of analytical Biochemistry ,AinShams

University ,2012, with very good

Grade: Very good with honor degree

Declaration

I declare that this thesis has been composed by myself and that the work of which it is a record has been done by myself. It has not been submitted for a degree at this or any other university.

Haidi Shebl Ahmed El-Ghandour

(2017)

Dedication

To my mother (GOD bless her soul)

Haidi Shebl Ahmed El-Ghandour

Contents

Acknowledgement
Abstract
List of Abbreviations
List of Figures
List of Tables
Introduction
Aim of the Work
Chapter I: Review of Literature
I.1. Definition of diabetes mellitus
I.2. Classification of diabetes mellitus
I.2.1. Type I Diabetes Mellitus
* Idiopathic diabetes
** Fulminant type1 diabetes mellitus
I.2.2. Type II Diabetes Mellitus
I.2.3. Gestational diabetes mellitus (GDM)
I.2.4. Other abnormalities of glucose tolerance
*Insulin resistance
I.3. Diabetic nephropathy
I.3.1.Pathophysiologic mechanisms of diabetic nephropathy
I.3. 1.1 Epithelial mesenchymal transition
*Transforming growth factor –β1
**Connective tissue growth factor
I.3.1.2. Protein kinase C
I.3.1.3. Reactive oxygen species
I.3.2. Stages of diabetic nephropathy
**Microalbumin in diabetic nephropathy
I.4. Sirtuin-1
I.4.1. Structure of Sirtuin-1
I.4.2. Biological functions of Sirtuin-1
I.4.2.1.Role of SIRT1 in the pathogensis of Type 2 diabetes
mellitus
I.4.2.2. Role of sirtuin-1 in glucose Homeostasis
I.4.2.3. Role of Sirtuin-1 in lipid metabolism
I.4.3. Sirtuin -1 and diabetic nephropathy
I.4.3.1.Interstial fibrosis and tubular cell apoptosis

I.4.3.2. Inflammation in the kidneys
I.4.3.3. Apoptosis of glomerular cells
I.4.3.4. Lipid metabolism in the kidneys
I.4.3.5. Role of sirtuins in Na ⁺ handling and regulation of
blood pressure
I.5. Advanced Glycation End Products (AGEs)
I.5.1. Formation of Advanced Glycation End Products
I.5.2. AGE and cross-link formation
I.5.3. AGE metabolism
I.5.4. Consequences of AGE formation in diabetes mellitus 4
I.5.4.1. AGEs in diabetic nephropathy
Chapter II: Subjects and Methods
II.1. Subjects
II.1.1.Samples collection and separation
II.2. Methods
II.2.1. Estimation of plasma glucose
II.2.2. Estimation of serum insulin
II.2.3. Measurement of insulin resistance (HOMA-IR)
II.2.4. Estimation of serum total cholesterol
II.2.5. Estimation of serum triacylglycerols 58
II.2.6. Estimation of HDL-C and LDL-C
II.2.7. Estimation of serum urea
II.2.8. Estimation of serum creatinine
II.2.9. Estimation of serum Sirtuin1
II.2.10.Estimation of Advanced Glycation End products
(AGEs)
II.2.11.Estimation of albumin excretion rate (microalbumin)
in urine
II.3. Statistical analysis
Chapter III: Results and Discussion
III.1. Results.
III.2. Discussion 92
Chapter IV: Summary and References
IV.1. Summary 98
IV.2. References
Arabic Abstract
Arabic Summary

Acknowledgement

First and foremost cordial thanks to GOD

No words could express my sincere appreciation and deepest thanks to *Prof. Dr.*, *Shadia Abd El-Hamid Fathy*, Professor of Biochemistry, Faculty of Science, Ain Shams University, for her endless help, motherly attitude, close supervision, her enthusiastic encouragement and revision of every detail, creative thinking, valuable suggestions and constant advice throughout this work.

I am deeply indebted to *Prof. Dr.,Tahany M.Abd El- Moneam(God bless her soul)*, Professor of Biochemistry, Endocrinology unit, Ain Shams University Hospitals, for her practical guidance, kind help, tremendous concern, care and invaluable assistance.

I am grateful to *Dr. Wafik A. El-Khayat*, Colleague of Biochemistry, Ain Shams University Hospitals for his instructive guidance and valuable support.

I wish to express my thanks to *Dr. Doaa Mohamed Ibrahim*, Lecturer of Biochemistry, Biochemistry Department, Faculty of Science, Ain Shams University for her valuable support and kind help.

Haidi Shebl Ahmed EL-Ghandour

Abstract

Sirtuin 1(Sirt1) is a NAD-dependant class III protein deacetylase.Sirt-1 plays an important role in cellular processes, including gene expression, cell cycle regulation, cell metabolism, oxidative stress response, apoptosis, DNA repair and ageing. Sirt1 is also associated with inflammation and immune response. In addition, sirt1 also affects insulin secretion, and glucose and lipid metabolism. The aim of the present study was to investigate the role of Sirtuin-1 in diabetic nephropathy and its relation to AGEs.

One hundred subjects were included in this study; 80 patients and 20 healthy subjects, sex and age matched, used as controls (Gr.I). The patients were divided into: Gr. II (normoalbuminuric patients); Gr.III (patients with diabetic nephropathy); Gr.IIIa (patients with microalbuminuria) and Gr. IIIb (patients with macroalbuminuria).

Fasting blood glucose, fasting insulin, Homeostasis model assessment for insulin resistance (HOMA-IR), renal function tests, lipid profile, serum Sirt1, serum AGEs and urine microalbumin were evaluated by (ELISA) in this study.

Results indicated that serum Sirt1 level was significantly lowered in normoalbuminric patients (p< 0.05). While, serum level of AGEs was significantly increased in all diabetic patients (p< 0.001). Serum Sirt1 was negatively correlated with microalbumin in macroalbuminuric patients. Additionally, serum Sirt1 showed a positive correlation with insulin and AGEs levels in total diabetic patients (p< 0.05 and p< 0.001 respectively).

In conclusion: Serum Sirt1 may be associated with minimal renal impairment in type 2 diabetic nephropathy patients.

List of Abbreviations

2-OAADPr :2-O- Acetyl-ADP-Ribose

3-DG :3-Deoxyglucosone

A/C :Albumin creatinine ratio

AceCS2 :Acetyl co-A synthetase 2

ADA :American diabetic association

ADP :Adenine diphosphate

ADPr :Adenine diphosphate ribose

AGEs :Advanced glycation end products

ARNT : Aryl hydrocarbon receptor nuclear translocator

ASK :Apoptosis Signal -regulating kinase

AT1R :Angiotensin II type I receptor

ATP : Adenine triphosphate

CD4 :Cluster of differentiation 4

CD8 :Cluster of differentiation 8

CKD :Chronic kidney disease

CKD :Chronic Kidney Disease

CML : $N\varepsilon$ -carboxymethyl-lysine

COX2 :Cyclo-oxygenase2

CTGF :Connective tissue growth factor

DN :Diabetic Nephropathy

DOLD :Deoxyglucasone-lysine dimer

EMT :Epithelial-mesenchymal transition

ESRD :End stage renal disease

FFA :Free fatty acid

FOXO1 : Forkhead box protein O1

FPG :Fasting plasma glucose

FXR :Farnesoid x receptor

GAD :Glutamic acid decarboxylase

GDH :Glutamate dehydrogenase

GDM :Gestational diabetes mellitus

GFR :Glomerular filtration rate

GLUT4 :Glucose transporter4

HDAC :Histone deacetylase

HDL-C :High density lipoprotein-c

HLA :Human leucocyte antigen

Hst : Histone

IAS :Insulin antibodies

ICAs : Islet cells

IDDM :Insulin dependent diabetes mellitus

IDF :International diabetes federation

IFG :Impaired fasting glucose

IGT :Impaired glucose tolerance

IKK :Inhihibtor κB –kinase enzyme

IR :Insulin receptor

IRS-1 :Insulin receptor substrate-1

JNK : c-Jun N-terminal kinase

LDL-C :Low density lipoprotein-c

LXR :Liver x-receptor

MAPK :Mitogen activated protein kinase

MCP-1 :Mononcyte chemoattractant protein-1

MGO :Methylglycoxal

MHC :Major histocomptability complex

MOLD :Methyl Glyoxal Lysine Dimer

NAD⁺ : Nicotinamide adenine dinucleotide

N-CoR : nuclear receptor co-repressor

NF-Kb :Nuclear factor kappa beta

OGTT :Oral glucose tolerance test

OXPHOS :Oxidative phosphorylation

PAI-1 :Plasminogen activator inhibitor

PGC-1α :Peroxisome proliferator-activated receptor gamma

coactivator1-alpha

PGE2 :Prostaglandins E2

PI3K :Phosphoinositide3-kinase

PI3K :Phosphotidyl-Inositol-3-OH Kinase

PKC :Protein kinase c

PPAr :Peroxisome proliferator activated-receptor

PTPB : Protein tyrosine phosphatase

RAGE :Receptor of advanced glycation end product

ROS :Reactive oxygen species

RPF :Renal protein flow

Sir2p :Silent information regulation2 protein

Smad :Small mother against decapentaplegic

SOD :Superoxide dismutase

SP :Specificity Protein

SREBP :Sterol regulatory element binding protein

STAT :Signal transducer activated transcription

T1DM :Type1diabetes mellitus

T2DM :Type2 diabetes mellitus

TGF-β :Transforming growth factor beta

TNF-α :Tumor necrosis factor alpha

UAE :Urinary albumin excretion

UAE :Urinary albumin excretion

UCP :Uncoupling protein

UUO : Unilateral ureteral obststruction

VEGF :Vascular endothelial growth factor

WHO :World health organization

α- SMA :Alfa smooth muscles actin

 α -ENaC :Epithelial Na⁺ channel α - subunit

List of Figures

Fig .No	Title	Page
		No.
(1)	Obesity and the development of inflammation and	7
	insulin resistance	
(2)	Mechanism of insulin resistance	12
(3)	Enzymatic Activities of Sirtuins	2٤
(4)	Biological functions of Sirtuin-1	26
(5)	Role of SIRT1 in the pathogensis of type2 diabetes mellitus	27
(6)	Role of SIRT1 in insulin secretion ,β-cell protection and insulin signaling	29
(7)	Role of SIRT1 in inflammation	30
(8)	Role of SIRT1 in lipid metabolism	3٤
(9)	Role of SIRT1 in diabetic nephropathy	30
(10)	Formation of AGEs	4١
(11)	Linear correlation between serum sirtuin -1 and AGEs in normoalbuminuric group	90
(12)	Linear correlation between serum sirtuin-1 and fasting plasma glucose in normoalbuminuric patients.	90
(13)	Linear correlation between serum sirtuin and AGEs in microalbuminuric group	91
(14)	Linear correlation between serum sirtuin-1 and insulin in macroalbuminuric patients	91

List of Tables

Table	Subject	Page
No.	Subject	No.
(1)	Etiological classification of diabetes mellitus	2
(2)	Categories of Urinary Albumin Excretion	21
(3)	Main Characteristic Of Mammalian Sirtuins	23
(4)	Body mass index, fasting plasma glucose, fasting insulin, HOMA-IR in control group, diabetic patients with normoalbuminuria and diabetic patients with nephropathy.	82
(5)	Lipid profile in control group, diabetic patients withnormoalbuminuria and diabetic patients with nephropathy.	82
(6)	Serum urea, creatinine and BUN in control group, diabetic patients with normoalbuminuria and diabetic patients with nephropathy.	83
(7)	Microalbumin, sirtuin-1 (SIRT1), advanced glycation end products (AGEs) in control group, diabetic patients with normoalbuminuria and diabetic patients with nephropathy.	83
(8)	Body mass index, fasting plasma glucose, insulin, lipid profile, creatinine, urea, AGEs, Sirt1, microalbumin and HOMA in diabetics compared with control group by ANOVA	84
(9)	Body mass index, fasting plasma glucose, fasting insulin, HOMA-IR in normoalbuminuric, microalbuminuric and macroalbuminuric patients.	85
(10)	Lipid profile in normoalbuminuric, microalbuminuric and macroalbuminuric patients.	85
(11)	Serum urea, creatinine and BUN in normoalbuminuric, microalbuminuric and macroalbuminuric patients.	86
(12)	Microalbumin, sirtuin-1(SIRT1), advanced glycation end products (AGEs)in normoalbuminuric, microalbuminuric and macroalbuminuric patients.	86
(13)	Pearson correlation coefficient (r _s) in normoalbuminuric patients.	87
(14)	Pearson correlation coefficient (r _s) in diabetic patients with nephropathy.	87
(15)	Pearson correlation coefficient (r _s) in microalbuminuric patients.	88
(16)	Pearson correlation coefficient (r _s) in macroalbuminuric patients.	89

Introduction

Diabetic nephropathy (DN) is a serious complication of diabetes; it initially manifests with microalbuminuria and progresses towards end-stage renal failure. Sustained diabetes-related metabolic and haemodynamic perturbations can induce subclinical low-grade renal inflammation and drive kidney from repair response to damage process, eventually to renal fibrosis (*Shirong et al.*, 2016).

Sirtuin-1(SIRT1) is the most conserved mammalian NAD⁺ dependant protein deacetylase that has emerged as a key metabolic sensor in various metabolic tissues. SIRT1 directly links the cellular metabolic status to the chromatin structure and the regulation of gene expression, there by modulating a variety of cellular processes such as energy metabolism and stress response (*Haigis et al.*, 2006).

During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) (*Jang et al.*, *2011*).

Advanced Glycation End products (AGEs) accumulate in most sites of diabetes complications including the kidneys, retina, and artherosclerotic plaques. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, reducing degradation capacity and interfering with receptor recognition (*Zouboulis and Markrantonaki*, 2011).